The dopamine transporter (DAT) critically regulates the duration of the cellular actions of dopamine and the extent to which dopamine diffuses in the extracellular space. We sought to determine whether the reportedly greater diffusion of dopamine in the rat prefrontal cortex (PFC) as compared with the striatum is associated with a more restricted axonal distribution of the cortical DAT protein. By light microscopy, avidin-biotin-peroxidase immunostaining for DAT was visualized in fibers that were densely distributed within the dorsolateral striatum and the superficial layers of the dorsal anterior cingulate cortex. In contrast, DAT-labeled axons were distributed only sparsely to the deep layers of the prelimbic cortex. By electron microscopy, DAT-immunoreactive profiles in the striatum and cingulate cortex included both varicose and intervaricose segments of axons. However, DAT-labeled processes in the prelimbic cortex were almost exclusively intervaricose axon segments. Immunolabeling for tyrosine hydroxylase in adjacent sections of the prelimbic cortex was localized to both varicosities and intervaricose segments of axons. These qualitative observations were supported by a quantitative assessment in which the diameter of immunoreactive profiles was used as a relative measure of whether varicose or intervaricose axon segments were labeled. These results suggest that considerable extracellular diffusion of dopamine in the prelimbic PFC may result, at least in part, from a paucity of DAT content in mesocortical dopamine axons, as well as a distribution of the DAT protein at a distance from synaptic release sites. The results further suggest that different populations of dopamine neurons selectively target the DAT to different subcellular locations.
The ability of dopamine to regulate the cognitive functions of the prefrontal cortex (PFC) involves complex modulatory actions on GABA-containing local circuit neurons in addition to pyramidal cells. However, the subclasses of cortical neurons that receive direct dopamine input are not known. We sought to determine whether dopamine terminals innervate the subclasses of local circuit neurons that contain the calcium-binding protein parvalbumin (PV), namely the wide arbor and chandelier neurons that target pyramidal cell soma and axon initial segments respectively. Sections through area 9 of five monkeys were labeled with immunoperoxidase for tyrosine hydroxylase (TH), to identify dopamine terminals, and with immunogold-silver for PV. Electron microscopic examination of the middle cortical layers (IIIb-IV) revealed that TH-positive terminals were sometimes directly apposed to PV-labeled dendrites, and approximately one-third of these contacts exhibited morphological features that are typically associated with symmetric synapses. In contrast, TH-immunolabeled terminals in the superficial layers (I-IIIa) were less frequently apposed to PV-positive dendrites, and none of these contacts exhibited synapse-like morphology. These findings, in concert with previous studies of GABA- or calretinin-containing local circuit neurons, suggest that dopamine's modulatory action in the PFC involves selective effects on only certain interneuron populations, including those that mediate potent inhibitory actions on pyramidal cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.