Abstract. In southern France, flash flood episodes frequently cause fatalities and severe damage. In order to inform and warn populations, the French flood forecasting service (SCHAPI, Service Central d'Hydrométéorologie et d'Appuià la Prévision des Inondations) initiated the BVNE (Bassin Versant Numérique Expérimental, or Experimental Digital Basin) project in an effort to enhance flash flood predictability. The target area for this study is the Gardon d'Anduze basin, located in the heart of the Cévennes range. In this Mediterranean mountainous setting, rainfall intensity can be very high, resulting in flash flooding. Discharge and rainfall gauges are often exposed to extreme weather conditions, which undermines measurement accuracy and continuity. Moreover, the processes governing rainfall-discharge relations are not well understood for these steeply-sloped and heterogeneous basins. In this context of inadequate information on both the forcing variables and process knowledge, neural networks are investigated due to their universal approximation and parsimony properties. We demonstrate herein that thanks to a rigorous variable and complexity selection, efficient forecasting of up to two-hour durations, without requiring rainfall forecasting as input, can be derived using the measured discharges available from a feedforward model. In the case of discharge gauge malfunction, in degraded mode, forecasting may result using a recurrent neural network model. We also observe that neural network models exhibit low sensitivity to uncertainty in rainfall measurements since producing ensemble forecasting does not significantly affect forecasting quality. In providing good results, this study suggests close consideration of our main purpose: generating forecasting on ungauged basins.
A neural network model is applied to simulate the rainfall-runoff relation of a karst spring. The input selection for such a model becomes a major issue when deriving a parsimonious and efficient model. The present study is focused on these input selection methods; it begins by proposing two such methods and combines them in a subsequent step. The methods introduced are assessed for both simulation and forecasting purposes. Since rainfall is very difficult to forecast, especially in the study area, we have chosen a forecasting mode that does not require any rainfall forecast assumptions. This application has been implemented on the Lez karst aquifer, a highly complex basin due to its structure and operating conditions. Our models yield very good results, and the forecasted discharge values at the Lez spring are acceptable up to a 1-day forecasting horizon. The combined input selection method ultimately proves to be promising, by reducing input selection time while taking into account: i) the model's ability to accommodate nonlinearity, and ii) the forecasting horizon.
Abstract. The climate change impact on mean and extreme precipitation events in the northern Mediterranean region is assessed using high-resolution EuroCORDEX and Med-CORDEX simulations. The focus is made on three regions, Lez and Aude located in France, and Muga located in northeastern Spain, and eight pairs of global and regional climate models are analyzed with respect to the SAFRAN product. First the model skills are evaluated in terms of bias for the precipitation annual cycle over historical period. Then future changes in extreme precipitation, under two emission scenarios, are estimated through the computation of past/future change coefficients of quantile-ranked model precipitation outputs. Over the 1981-2010 period, the cumulative precipitation is overestimated for most models over the mountainous regions and underestimated over the coastal regions in autumn and higher-order quantile. The ensemble mean and the spread for future period remain unchanged under RCP4.5 scenario and decrease under RCP8.5 scenario. Extreme precipitation events are intensified over the three catchments with a smaller ensemble spread under RCP8.5 revealing more evident changes, especially in the later part of the 21st century.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.