Abstract. The neurotrophin family includes NGF, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). Previous studies have demonstrated that expression of NGF and its low-affinity receptor is induced in nonneuronal cells of the distal segment of the transected sciatic nerve suggesting a role for NGF during axonal regeneration (Johnson, E. M., M. Taniuchi, and P. S. DeStefano. 1988. Trends Neurosci. 11:299-304). To assess the role of the other neurotrophins and the members of the family of Trk signaling neurotrophin receptors, we have here quantified the levels of mRNAs for BDNF, NT-3, and NT-4 as well as mRNAs for trkA, trkB, and trkC at different times after transection of the sciatic nerve in adult rats. A marked increase of BDNF and NT-4 mRNAs in the distal segment of the sciatic nerve was seen 2 wk after the lesion. The increase in BDNF mRNA was mediated by a selective activation of the BDNF exon IV promoter and adrenalectomy attenuated this increase by 50%. NT-3 mRNA, on the other hand, decreased shortly after the transection but returned to control levels 2 wk later. In Schwann Cells ensheathing the sciatic nerve, only trkB mRNA encoding truncated TrkB receptors was detected with reduced levels in the distal part of the lesioned nerve. Similar results were seen using a probe that detects all forms of trkC mRNA. In the denervated gastrocnemius muscle, the level of BDNF mRNA increased, NT-3 mRNA did not change, while NT-4 mRNA decreased. In the spinal cord, only small changes were seen in the levels of neurotrophin and trk mRNAs. These results show that expression of mRNAs for neurotrophins and their Trk receptors is differentially regulated after a peripheral nerve injury. Based on these results a model is presented for how the different neurotrophins could cooperate to promote regeneration of injured peripheral nerves.
In this study the actions of NGF in regulating peptide expression were examined in vivo in adult rat primary sensory neurons. The hypothesis that NGF might tonically inhibit expression of some peptides was tested specifically. In situ hybridization and immunohistochemistry were used to detect presence or absence of alpha-CGRP, beta-CGRP, SP, SOM, VIP, CCK, NPY, and GAL as well as their mRNAs. In neurons in normal lumbar DRG alpha-CGRP, beta-CGRP, SP, and SOM are abundantly and heterogeneously expressed whereas few neurons have detectable VIP, CCK, NPY, or GAL. Two weeks following sciatic nerve transection, concentrations of alpha-CGRP, beta-CGRP, SP, and SOM plus their mRNAs have decreased to background in all but a few neurons. In contrast, VIP, CCK, NPY, and GAL are now synthesized in many neurons. Delayed intrathecal infusion of NGF (125 ng/microliter/hr) for 7 d, starting 2 weeks after injury counteracted the decrease in expression of alpha- CGRP, beta-CGRP and SP expression, but not SOM. This lack of influence of NGF on SOM is consistent with the absence of high-affinity NGF receptors and trk mRNA in SOM-positive neurons. Delayed infusion of NGF also reduced the number of neurons expressing VIP, CCK, NPY, and GAL after injury by approximately one-half in each subpopulation. Therefore, we suggest that NGF suppresses expression of these four peptides but only if the neurons also have NGF receptors. The results show that NGF can regulate peptide expression differentially and may also be part of the signal that allows reversion to normal of responses to injury as axons regenerate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.