Mammalian sperm plasma membranes, in contrast to those of mammalian somatic cells, exhibit a significant fraction of lipid that does not diffuse laterally in the plane of the membrane. This nondiffusing fraction results from lipid-ipid interactions. Similar nondiffusing fractions are found in mixed-lipid model systems that contain coexistent gel and fluid domains. These results suggest that the sperm plasma membrane may also exhibit lateral phase segregations of lipids and may contain significant amounts of gel-phase lipid. In this paper we use differential scanning calorimetry to show that, in contrast to the plasma membranes of mammalian somatic cells, the plasma membrane from the anterior region of the head of ram sperm exhibits at least two major endothermic transitions, one centered at -260C and one centered at 60°C. The heats of these transitions are consistent with gel-to-fluid transitions in model membranes. These transitions are observed both in plasma membrane vesicles and in rehydrated lipid extracts made from these vesicles. These results demonstrate that at physiological temperatures the lipids of the ram sperm plasma membrane are segregated into coexistent fluid and gel domains.
In the plasma membranes of most mammalian somatic cells, lipid is nearly completely free to diffuse laterally in the plane of the membrane. In mammalian spermatozoa and certain other highly polarized mammalian cells, a significant fraction of the plasma membrane lipid is not free to diffuse laterally. Using the technique of fluorescence recovery after photobleaching, we have demonstrated that a variety of fluorescent lipid analogues exhibit a nondiffusing fraction in the plasma membrane of the anterior region of the ram sperm head. The possible causes of this nondiffusing fraction were investigated. The nondiffusing lipid fraction is not the result of lipid oxidation during handling, and it is not released by extensive enzymatic digestion of the membrane surface proteins or the "bleeding" of the membrane by hypoosmotic shock. When lipid bilayers were prepared from protein-free lipid extracts of the plasma membranes of spermatozoa, most of the nondiffusing fraction was retained. These results suggest that the nondiffusing lipid fraction results from lipid factors such as lateral phase separations, which can cause such a nondiffusing fraction in model systems.
The specific ultrasonic absorption coefficient per wavelength as a function of temperature in the vicinity of the phase transition of liposomes, composed of a 4 : 1 mixturc of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglyeerol (DPPG), of different sizes was determined using an acoustic interferometer. Small unilamellar vesicles {,SUV) and multilamellar vesiclcs (MLV) yielded results similar to those in the literature, viz., an absorption maximum at the transition temperature. Seven intermediate sizes including several size distributions of large unilamellar vesicles (LUV) were studied, yielding information on size dependencies of the temperatures at which the peaks occur, the widths at half peak amplitude, and the peak amplitudes. All liposome sizes except the SUV exhibited approximately the same transition temperature as did the largest MLV. The widths of the peaks were inversely related to liposome size, with a strong dependence for the smallest vesicles and an approach to independence for the largest vesicles. The amplitudes of the peaks exhibited a general increase with size with two exceptions, viz., the SUV and the vesicles with average diameters of 90-100 nm. It was also found that the membrane permeability increased near the transition temperature. The temperature dependencies of ultrasonic absorption and membrane permeability are compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.