We amplified, TA-cloned, and sequenced the 16S-23S internal transcribed spacer (ITS) regions from single isolates of several cyanobacterial species, Calothrix parietina, Scytonema hyalinum, Coelodesmium wrangelii, Tolypothrix distorta, and a putative new genus (isolates SRS6 and SRS70), to investigate the potential of this DNA sequence for phylogenetic and population genetic studies. All isolates carried ITS regions containing the sequences coding for two tRNA molecules (tRNA and tRNA). We retrieved additional sequences without tRNA features from both C. parietina and S. hyalinum. Furthermore, in S. hyalinum, we found two of these non-tRNA-encoding regions to be identical in length but different in sequence. This is the first report of ITS regions from a single cyanobacterial isolate not only different in configuration, but also, within one configuration, different in sequence. The potential of the ITS region as a tool for studying molecular systematics and population genetics is significant, but the presence of multiple nonidentical rRNA operons poses problems. Multiple nonidentical rRNA operons may impact both studies that depend on comparisons of phylogenetically homologous sequences and those that employ restriction enzyme digests of PCR products. We review current knowledge of the numbers and kinds of 16S-23S ITS regions present across bacterial groups and plastids, and we discuss broad patterns congruent with higher-level systematics of prokaryotes.
Thirty‐one strains of Microcoleus were isolated from desert soils in the United States. Although all these taxa fit the broad definition of Microcoleus vaginatus (Vaucher) Gomont in common usage by soil algal researchers, sequence data for the 16S rRNA gene and 16S–23S internal transcribed spacer (ITS) region indicated that more than one species was represented. Combined sequence and morphological data revealed the presence of two morphologically similar taxa, M. vaginatus and Microcoleus steenstrupii Boye‐Petersen. The rRNA operons of these taxa were sufficiently dissimilar that we suspect the two taxa belong in separate genera. The M. vaginatus clade was most similar to published sequences from Trichodesmium and Arthrospira. When 16S sequences from the isolates we identified as M. steenstrupii were compared with published sequences, our strains grouped with M. chthonoplastes (Mertens) Zanardini ex Gomont and may have closest relatives among several genera in the Phormidiaceae. Organization within the 16S–23S ITS regions was variable between the two taxa. Microcoleus vaginatus had either two tRNA genes (tRNAIle and tRNAAla) or a fragment of the tRNAIle gene in its ITS regions, whereas M. steenstrupii had rRNA operons with either the tRNAIle gene or no tRNA genes in its ITS regions. Microcoleus vaginatus showed no subspecific variation within the combined morphological and molecular characterizations, with 16S similarities ranging from 97.1% to 99.9%. Microcoleus steenstrupii showed considerable genetic variability, with 16S similarities ranging from 91.5% to 99.4%. In phylogenetic analyses, we found that this variability was not congruent with geography, and we suspect that our M. steenstrupii strains represent several cryptic species.
Nine isolates of unicellular green algae were obtained from six geographically separate desert microbiotic crust communities in western North America. Microscopically, eight isolates strongly resembled unicellular forms of Scenedesmus obliquus (Turpin) Kützing. They are oval or crescent shaped, often flattened on one side, with knobby cell apices. SEM indicated a lack of wall ornamentation. Fine filaments connecting cells pole to pole were observed in some isolates, as previously documented in Scenedesmus (Dactylococcus) dissociatus and S. obliquus. The ninth isolate was spherical, without knobby apices or connections between cells, and was similar to unicellular forms that were originally classified as species of Chlorella (Scenedesmus vacuolatus and S. rubescens). None of the isolates formed coenobia in liquid culture. Phylogenetic analysis of the 18S rRNA gene placed all desert isolates in the genus Scenedesmus, separating them into two or three weakly resolved groups along with published sequences of other Scenedesmus isolates. Phylogenetic analyses of the internal transcribed spacer region revealed well-supported lineages of desert algae that were unsupported with 18S data alone. The eight S. obliquus-like desert strains formed two distinct clades that excluded the S. obliquus strains from geographically widespread nondesert habitats. The ninth strain was outside of the S. obliquus group, associated with S. raciborskii and S. pectinatus. These results demonstrate three lineages of Scenedesmus from desert soils and provide robust support for the presence of cryptic species in S. obliquus, a morphospecies that is said to have a cosmopolitan distribution. Three new species of Scenedesmus are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.