Although peri-urban landscapes in Southern Europe still preserve a relatively high level of biodiversity in relict natural places, urban expansion is progressively consuming agricultural land and, in some cases, forest cover. This phenomenon has (direct and indirect) environmental implications, both positive and negative. The present study contributes to clarifying the intrinsic nexus between long-term urban expansion and forest dynamics in a representative Mediterranean city based on diachronic land-use maps. We discuss some counterintuitive results of urbanization as far as forest expansion, wildfire risk, and biodiversity conservation are concerned. Forest dynamics were investigated at two time intervals (1936–1974 and 1974–2018) representing distinctive socioeconomic contexts in the Rome metropolitan area in Central Italy. Additionally, the spatial relationship between forest cover and urban growth was evaluated using settlement density as a target variable. All over the study area, forest cover grew moderately over time (from 18.3% to 19.9% in the total landscape), and decreased along the urban gradient (i.e., with settlement density) more rapidly in 2018 than in 1936. The diversification of forest types (Shannon H index) was higher in areas with medium-density settlements, indicating a tendency towards more heterogeneous and mixed structures in rural and peri-urban woods that undergo rising human pressure. The dominance of a given forest type (Simpson’s D index) was higher at high settlement density areas. Evenness (Pielou’s J index) was the highest at low settlement density areas. The long-term assessment of land-use dynamics in metropolitan fringes enriched with a spatially explicit analysis of forest types may inform regional planning and environmental conservation, which could delineate appropriate strategies for sustainable land management in Southern European cities.
Taken as a classical issue in applied economics, the notion of ‘convergence’ is based on the concept of path dependence, i.e., from the previous trajectory undertaken by the system during its recent history. Going beyond social science, a ‘convergence’ perspective has been more recently adopted in environmental studies. Spatial convergence in non-linear processes, such as desertification risk, is a meaningful notion since desertification represents a (possibly unsustainable) development trajectory of socio-ecological systems towards land degradation on a regional or local scale. In this study, we test—in line with the classical convergence approach—long-term equilibrium conditions in the evolution of desertification processes in Italy, a European country with significant socioeconomic and environmental disparities. Assuming a path-dependent development of desertification risk in Italy, we provided a diachronic analysis of the Environmental Sensitive Area Index (ESAI), estimated at a disaggregated spatial resolution at three times (1960s, 1990s, and 2010s) in the recent history of Italy, using a spatially explicit approach based on geographically weighted regressions (GWRs). The results of local regressions show a significant path dependence in the first time interval (1960–1990). A less significant evidence for path-dependence was observed for the second period (1990–2010); in both cases, the models’ goodness-of-fit (global adjusted R2) was satisfactory. A strong polarization along the latitudinal gradient characterized the first observation period: Southern Italian land experienced worse conditions (e.g., climate aridity, urbanization) and the level of land vulnerability in Northern Italy remained quite stable, alimenting the traditional divergence in desertification risk characteristic of the country. The empirical analysis delineated a more complex picture for the second period. Convergence (leading to stability, or even improvement, of desertification risk) in some areas of Southern Italy, and a more evident divergence (leading to worse environmental conditions because of urban sprawl and crop intensification) in some of the land of Northern Italy, were observed, leading to an undesired spatial homogenization toward higher vulnerability levels. Finally, this work suggests the importance of spatially explicit approaches providing relevant information to design more effective policy strategies. In the case of land vulnerability to degradation in Italy, local regression models oriented toward a ‘convergence’ perspective, may be adopted to uncover the genesis of desertification hotspots at both the regional and local scale.
Tillage and harvesting operations of perennial forage crops have problems with soil compaction. The effects of this phenomenon are soil deterioration with reduced crop performance and yield. This study aims to assess soil disturbance by measuring the level of compaction caused by the harvesting operations of Phalaris arundinacea L. P. arundinacea is a species that lends itself to biomass production and phytoremediation of contaminated soils; it adapts to difficult soil conditions, outperforming other species in terms of ease of planting, cost, maturity time, yield, and contamination levels. The crop was sown in three plots of the experimental teaching farm of the University of Tuscia, Viterbo, Italy. Following a detailed analysis of the chemical–physical characteristics of the soil, minimum tillage was chosen in order to concentrate on harvesting operations, which were carried out with a disc mower coupled to a tractor. This was followed by penetration resistance and soil moisture measurements to verify the incidence of the operations and the effect of the type of crop on compaction. On the study site, measurements were taken at points that the wheels of the tractor had gone over and at points that they had not. The soil analysis results indicate different chemical–physical characteristics between the two areas, the texture being frankly sandy to clayey. Penetration resistance measurements indicated differences for the first 20 cm between the part that was covered by the tractor’s tyres and the part that was left touched but also between the three plots. Moisture influenced penetration resistance. This study provides an evaluation of the first data obtained from a project that will last four years and which will explore the dynamics between soil, cultivation, and harvesting operations, giving a fundamental basis for further investigation of further harvesting operations and soil characteristics, which are crucial for planning and managing crops and reducing impacts on the soil in order to preserve it.
Tree climbing techniques for arboriculture are becoming more and more popular, but like any work activity, there are risks for the operator. The PPE (personal protective equipment) and protective systems studied here include semi-static ropes and friction hitches. The work rope/friction hitch system is a combination that many operators rely on, but unlike current mechanical rope clamps and descenders, they do not have European certifications. For this reason, tensile tests were carried out using a traction bench on rope/knot systems. Two rope models and two types of knots were used to stress the systems and materials as much as possible, so as to observe the resulting ratios. A total of 36 tests were carried out in which measurements were taken, including applied load in traction, knot creep, and rope diameter changes. Several results were obtained, including a maximum load of 18.7 kN, a maximum slip of 9.6 cm and a maximum diameter variation of 3 mm. This work represents a preliminary investigation for verifying the relationship between work ropes and friction knots. Relationships among the variables were observed; differences emerged mainly as a function of the type of knot used rather than the type of rope used. The data obtained is also important for applications towards improving preventative safety measures.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.