Resource partitioning among the ungulate species occupying African savanna ecosystems has been well documented in relation to food resources and habitat features, but few studies have addressed how distinctions in surface water dependency contribute to coexistence. During the dry season surface water becomes restricted to a few perennial sources, while the food resources remaining at this time are also most limited in quantity, especially near water where animals congregate to drink. We compared the movement patterns to and from water of sable antelope Hippotragus niger and zebra Equus quagga herds in Kruger National Park (KNP), South Africa. Owing to distinctions in their digestive systems, we expected sable to drink less frequently than zebra, allowing sable to occupy regions further from surface water than zebra. Sable travelled to water at 2-4-day intervals, versus 1-2-day intervals for zebra. However, sable travelled c. 25% greater distances to water due to the location of their late dry season home ranges relative to perennial water sources; zebra home ranges were generally closer to water sources. Travelling 10-15 km to and from water substantially reduced time spent foraging and resting by both species on days when animals drank. Longer intervals between travel to water by the sable antelope herd enabled it to occupy regions of the landscape further from water than those heavily exploited by the more common grazers during the critical dry season months. By avoiding concentrations of other grazers, the sable also probably gained a reduction in predation risk, balancing the substantial costs in terms of time and energy associated with travel to water. Thereby the distinctions in water dependency of this relatively rare grazer facilitated its coexistence alongside more abundant grazers in the KNP.
Species assemblages commonly include species persisting at low density alongside more abundant species, raising questions about the mechanisms enabling this coexistence. Relatively rare species may persist through (1) specializing on a narrow range of resource types that are sparsely but widely available or (2) precisely selecting patches where their favoured resources are concentrated that are only lightly exploited by more abundant species. Our study compared the habitat and resource use across a range of scales of relatively uncommon sable antelope with those of more abundant buffalo and zebra sharing a common preference for relatively tall grass. Buffalo occupied a wide range of habitat types, but shifted towards lowlands during the late dry season when water became limiting. Sable and zebra foraged year-round in upland regions, undertaking journeys to water. Zebra occupied mainly the prevalent habitat type on basaltic substrates. Sable more narrowly exploited habitats on quartzitic sandstone where green leaves persisted in grasslands through the dry season, and favoured the grass species that retained green leaves. Buffalo and zebra were tolerant of grass that was mostly brown. Hence, the coexistence of sable was enabled by their precise selection for the green foliage remaining in between the depletion zones generated by the more abundant grazers. Nevertheless, the local sable distribution had contracted following an influx of zebra, suggesting that resource use distinctions were insufficient to prevent the competitive displacement of sable from a wider region by zebra. Hence, niche breadth and resource availability concepts both have relevance.
Competitive relationships among mobile animals may be expressed through dynamically changing spatial relationships over different time frames. Less common species that are apparently inferior competitors may be able to coexist with more abundant species by concentrating in regions of the landscape little utilized by the former at spatio-temporal scales from annual or seasonal ranges to the specific foraging localities exploited at different stages of the annual cycle. Spatial relationships may be influenced further by dependencies on other resources, predation risks and facilitatory interactions under certain conditions. Our study aimed to determine whether competition with more abundant zebra and buffalo restricted the abundance of sable antelope in a region where these three tall-grass grazers overlapped in their herd distributions. We tracked the simultaneous movements of animals representing herds of these species over two dry seasons and one wet season using GPS-GSM collars, and estimated seasonal or monthly range extents and their overlap. We also compared daily separation distances between these animals against the null pattern expected if their movements had been independent, and assessed how prior grazing by buffalo influenced the subsequent use of these localities by sable. The range of the sable herd was mostly separated from the seasonal range of the buffalo herd during the late dry season of 2006 and throughout the dry season of 2007. Seasonal home ranges of zebra herds overlapped partially with the range of the sable herd during most of the year. Even during times when their ranges overlapped, sable were rarely recorded within 1 km of the buffalo herd. Prior grazing by buffalo beyond a threshold level inhibited later use of these localities by sable, but the sable were nevertheless able to exploit places that were little utilized by buffalo at that time. Sable were less able to evade overlap with the small, mobile zebra herds, and hence more vulnerable to competitive exclusion by zebra than by buffalo. Our findings demonstrate how less abundant species can restrict competition from more abundant competitors through dynamic spatial partitioning in regions where their home ranges overlap.
Savannas cover 60% of the land surface in Southern Africa, with fires and herbivory playing a key role in their ecology. The Limpopo National Park (LNP) is a 10,000 km 2 conservation area in southern Mozambique and key to protecting savannas in the region. Fire is an important factor in LNP's landscapes, but little is known about its role in the park's ecology. In this study, we explored the interaction between fire frequency (FF), landscape type, and vegetation. To assess the FF, we analyzed ten years of the Moderate resolution Imaging Spectroradiometer (MODIS) burned area product (2003–2013). A stratified random sampling approach was used to assess biodiversity across three dominant landscapes (Nwambia Sandveld‐NS, Lebombo North‐LN, and Shrubveld Mopane on Calcrete‐C) and two FF levels ( low —twice or less; and high —3 times or more, during 10 years). Six ha were sampled in each stratum, except for the LN versus high FF in which low accessibility allowed only 3 ha sampling. FF was higher in NS and LN landscapes, where 25% and 34% of the area, respectively, burned more than three times in 10 years. The landscape type was the main determinant of grass composition and biomass. However, in the sandy NS biomass was higher under high FF. The three landscapes supported three different tree/shrub communities, but FF resulted in compositional variations in NS and LN. Fire frequency had no marked influence on woody structural parameters (height, density, and phytomass). We concluded that the savannas in LNP are mainly driven by landscape type (geology), but FF may impose specific modifications. We recommend a fire laissez‐faire management system for most of the park and a long‐term monitoring system of vegetation to address vegetation changes related to fire. Fire management should be coordinated with the neighboring Kruger National Park, given its long history of fire management. Synthesis : This study revealed that grass and tree/shrub density, biomass, and composition in LNP are determined by the landscape type, but FF determines some important modifications. We conclude that at the current levels FF is not dramatically affecting the savanna ecosystem in the LNP (Figure 1). However, an increase in FF may drive key ecosystem changes in grass biomass and tree/shrub species composition, height, phytomass, and density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.