Background: P53 is a key tumor suppressor protein. In response to DNA damage, p53 accumulates to high levels in differentiated cells and activates target genes that initiate cell cycle arrest and apoptosis. Since stem cells provide the proliferative cell pool within organisms, an efficient DNA damage response is crucial.
P53 is an important tumor suppressor that, upon activation, induces growth arrest and cell death. Control of p53 is thus of prime importance for proliferating cells, but also for cancer therapy, where p53 activity contributes to the eradication of tumors. Mdm2 functionally inhibits p53 and targets the tumor suppressor protein for degradation. In a genetic screen, we identified TRIM25 as a novel regulator of p53 and Mdm2. TRIM25 increased p53 and Mdm2 abundance by inhibiting their ubiquitination and degradation in 26 S proteasomes. TRIM25 co-precipitated with p53 and Mdm2 and interfered with the association of p300 and Mdm2, a critical step for p53 polyubiquitination. Despite the increase in p53 levels, p53 activity was inhibited in the presence of TRIM25. Downregulation of TRIM25 resulted in an increased acetylation of p53 and p53-dependent cell death in HCT116 cells. Upon genotoxic insults, TRIM25 dampened the p53-dependent DNA damage response. The downregulation of TRIM25 furthermore resulted in massive apoptosis during early embryogenesis of medaka, which was rescued by the concomitant downregulation of p53, demonstrating the functional relevance of the regulation of p53 by TRIM25 in an organismal context.
p53 is well known as a "guardian of the genome" for differentiated cells, in which it induces cell cycle arrest and cell death after DNA damage and thus contributes to the maintenance of genomic stability. In addition to this tumor suppressor function for differentiated cells, p53 also plays an important role in stem cells. In this cell type, p53 not only ensures genomic integrity after genotoxic insults but also controls their proliferation and differentiation. Additionally, p53 provides an effective barrier for the generation of pluripotent stem cell-like cells from terminally differentiated cells. In this review, we summarize our current knowledge about p53 activities in embryonic, adult and induced pluripotent stem cells.
Pluripotent stem cells offer an abundant and malleable source for the generation of differentiated cells for transplantation as well as for in vitro screens. Patterning and differentiation protocols have been developed to generate neural progeny from human embryonic or induced pluripotent stem cells. However, continued refinement is required to enhance efficiency and to prevent the generation of unwanted cell types. We summarize and interpret insights gained from studies of embryonic neuroepithelium. A multitude of factors including soluble molecules, interactions with the extracellular matrix and neighboring cells cooperate to control neural stem cell self-renewal versus differentiation. Applying these findings and concepts to human stem cell systems in vitro may yield more appropriately patterned cell types for biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.