In a cross-sectional study, 96 welders were compared with 96 control subjects. Also 27 former welders, all diagnosed as having manganism, were examined. Exposure to welding fumes was determined in the 96 welders, while the concentration of elements in whole blood and urine was determined in all subjects. The geometric mean (GM) concentrations of manganese (Mn) and iron in the workroom air were 97 microg m(-3) (range 3-4620 microg m(-3); n=188) and 894 microg m(-3) (range 106-20 300 microg m(-3); n=188), respectively. Thus the Mn concentration in the workroom air was on average 10.6% (GM) of that of the Fe concentration. No substantial difference was observed in the air Mn concentrations when welding mild steel as compared to welding stainless steel. The arithmetic mean (AM) concentration of Mn in whole blood (B-Mn) was about 25% higher in the welders compared to the controls (8.6 vs. 6.9 microg l(-1); p < 0.001), while the difference in the urinary Mn concentrations did not attain statistical significance. A Pearson's correlation coefficient of 0.31 (p < 0.01) was calculated between B-Mn and Mn in the workroom air that was collected the day before blood sampling. Although the exposure to welding fumes in the patients had ceased on average 5.8 years prior to the study (range 4 years-7 years), their AM B-Mn concentration was still higher than in referents of similar age (8.7 microg l(-1) vs. 7.0 microg l(-1)). However, their urinary concentrations of cobolt, iron and Mn were all statistically significantly lower.
The exposure characterisation described in this paper for 135 copper refinery workers (45 females, 90 males) focuses on the concentrations of copper, nickel and other trace elements in the inhalable aerosol fractions, as well as in the water-soluble and water-insoluble subfractions. Some information is also provided on the thoracic and respirable aerosol fractions. Further, results are presented for volatile hydrides of arsenic and selenium released in the copper purification steps of the electrorefining process. For the pyrometallurgical operations, a comparison of the geometric means for the inhalable aerosol fraction indicated that water-soluble copper levels were on average 19-fold higher compared to nickel (p < 0.001) and a significant association was evident between them (r = 0.87, p < 0.001); for the insoluble subfraction, the copper : nickel ratio was 12.5 (p < 0.001) and the inter-element correlation had r = 0.98 and p < 0.001. Although for the electrorefinery workers the relative inhalable concentrations of copper and nickel were not significantly different (p > 0.05), the corresponding inter-element associations were: slope of 7.7, r= 0.54, p < or =0.001 for the water-soluble subfraction and slope of 1.3, r = 0.71 and p < or =0.001 for the water-insoluble subfraction. On average, a good proportion of the inhalable copper and nickel were found in the thoracic (40%) and respirable (20%) aerosol fractions. Cobalt air concentrations were generally low with geometric means and 95% confidence intervals of 3.1 (2.4-4.2)microg m(-3) (pyrometallurgical workers) and 0.3 (0.4-0.5) microg m(-3)(electrorefinery workers). Similarly, the maximum concentrations of cadmium and lead were low, respectively 4 and 25 microg m(-3). Of the hydrides, tellurium and antimony could not be detected, but for the arsenic (arsine) and selenium hydrides measurable exposure occurred for almost all electrorefinery workers, although the levels were generally low at 0.2 microg m(-3).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.