Endogenous electromagnetic low-frequency component of the biofield of the flower plants was studied experimentally. It was found that a borderline of bioinformation field surrounding plants (10-70 cm from a flower) transforms into bioinformation radiation, which is spread far beyond the detected border.
Hydrophilic materials immersed in aqueous solutions show near-surface zones that exclude suspended colloids and dissolved molecules. These exclusion zones (EZs) can extend for tens to hundreds of micrometers from hydrophilic surfaces and show physicochemical properties that differ from bulk water. Here we report that exposure of standard aqueous microsphere suspensions to static magnetic fields creates similar microsphere-free zones adjacent to magnetic poles. The EZs build next to both north and south poles; and they build whether the microspheres are of polystyrene or carboxylate composition. EZ formation is accompanied by ordered motions of microspheres, creating dense zones some distance from the magnetic poles and leaving microsphere-free zones adjacent to the magnet. EZ size was larger next to the north pole than the south pole. The difference was statistically significant when polystyrene microspheres were used, although not when carboxylate microspheres were used. In many ways, including both size and dynamics, these exclusion zones resemble those found earlier next to various hydrophilic surfaces. The ability to create EZs represents a feature of magnets not previously revealed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.