[reaction: see text] The viability of oximes as nucleophiles in transition-metal-catalyzed allylic substitution was examined. The oxygen atom of oxime acted as a reactive nucleophile in the reaction of a pi-allyl palladium complex. In the presence of Pd(PPh3)4, the allylic substitution of oximes with allylic carbonate afforded the linear O-allylated oxime ethers selectively without a base. In contrast, the palladium-catalyzed reaction with allylic acetate proceeded smoothly in the presence of K2CO3 or Et2Zn as a base. Selective formation of nitrones was achieved by using palladium(II) catalyst. In the presence of Pd(cod)Cl2, the allylic substitution of oximes with allylic acetate afforded the N-allylated nitrones under solvent-free conditions, as a result of the reaction with the nitrogen atom of oximes.
As a convenient and direct functionalization of guanidines, the transition metal-catalyzed allylic substitution of guanidines was studied. The guanidine derivatives bearing two electron-withdrawing substituents acted as reactive nucleophiles in the allylic substitution to give the monoallylated products. The double allylic substitution was achieved by using tri-Boc-guanidine bearing three electron-withdrawing substituents as a nucleophile to give the diallylated products. The regiocontrol in the allylic substitution of unsymmetrical allylic substrates has been investigated by employing the palladium or iridium catalysts. The iridium complex of chiral pybox ligand allowed the regio- and enantioselective allylic substitution. Asymmetric double allylic substitution of tri-Boc-guanidine with phosphate bearing the 1-naphthyl group gave the diallylated product with high diastereo-, regio-, and enantioselectivities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.