Population isolates such as those in Finland benefit genetic research because deleterious alleles are often concentrated on a small number of low-frequency variants (0.1% ≤ minor allele frequency < 5%). These variants survived the founding bottleneck rather than being distributed over a large number of ultrarare variants. Although this effect is well established in Mendelian genetics, its value in common disease genetics is less explored1,2. FinnGen aims to study the genome and national health register data of 500,000 Finnish individuals. Given the relatively high median age of participants (63 years) and the substantial fraction of hospital-based recruitment, FinnGen is enriched for disease end points. Here we analyse data from 224,737 participants from FinnGen and study 15 diseases that have previously been investigated in large genome-wide association studies (GWASs). We also include meta-analyses of biobank data from Estonia and the United Kingdom. We identified 30 new associations, primarily low-frequency variants, enriched in the Finnish population. A GWAS of 1,932 diseases also identified 2,733 genome-wide significant associations (893 phenome-wide significant (PWS), P < 2.6 × 10–11) at 2,496 (771 PWS) independent loci with 807 (247 PWS) end points. Among these, fine-mapping implicated 148 (73 PWS) coding variants associated with 83 (42 PWS) end points. Moreover, 91 (47 PWS) had an allele frequency of <5% in non-Finnish European individuals, of which 62 (32 PWS) were enriched by more than twofold in Finland. These findings demonstrate the power of bottlenecked populations to find entry points into the biology of common diseases through low-frequency, high impact variants.
Population isolates such as Finland provide benefits in genetic studies because the allelic spectrum of damaging alleles in any gene is often concentrated on a small number of low-frequency variants (0.1% ≤ minor allele frequency < 5%), which survived the founding bottleneck, as opposed to being distributed over a much larger number of ultra--rare variants. While this advantage is well-- established in Mendelian genetics, its value in common disease genetics has been less explored. FinnGen aims to study the genome and national health register data of 500,000 Finns, already reaching 224,737 genotyped and phenotyped participants. Given the relatively high median age of participants (63 years) and dominance of hospital-based recruitment, FinnGen is enriched for many disease endpoints often underrepresented in population-based studies (e.g., rarer immune-mediated diseases and late onset degenerative and ophthalmologic endpoints). We report here a genome-wide association study (GWAS) of 1,932 clinical endpoints defined from nationwide health registries. We identify genome--wide significant associations at 2,491 independent loci. Among these, finemapping implicates 148 putatively causal coding variants associated with 202 endpoints, 104 with low allele frequency (AF<10%) of which 62 were over two-fold enriched in Finland.We studied a benchmark set of 15 diseases that had previously been investigated in large genome-wide association studies. FinnGen discovery analyses were meta-analysed in Estonian and UK biobanks. We identify 30 novel associations, primarily low-frequency variants strongly enriched, in or specific to, the Finnish population and Uralic language family neighbors in Estonia and Russia.These findings demonstrate the power of bottlenecked populations to find unique entry points into the biology of common diseases through low-frequency, high impact variants. Such high impact variants have a potential to contribute to medical translation including drug discovery.
The role of structural brain magnetic resonance imaging (MRI) is becoming more and more emphasized in the early diagnostics of Alzheimer's disease (AD). This study aimed to assess the improvement in classification accuracy that can be achieved by combining features from different structural MRI analysis techniques. Automatically estimated MR features used are hippocampal volume, tensor-based morphometry, cortical thickness and a novel technique based on manifold learning. Baseline MRIs acquired from all 834 subjects (231 healthy controls (HC), 238 stable mild cognitive impairment (S-MCI), 167 MCI to AD progressors (P-MCI), 198 AD) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database were used for evaluation. We compared the classification accuracy achieved with linear discriminant analysis (LDA) and support vector machines (SVM). The best results achieved with individual features are 90% sensitivity and 84% specificity (HC/AD classification), 64%/66% (S-MCI/P-MCI) and 82%/76% (HC/P-MCI) with the LDA classifier. The combination of all features improved these results to 93% sensitivity and 85% specificity (HC/AD), 67%/69% (S-MCI/P-MCI) and 86%/82% (HC/P-MCI). Compared with previously published results in the ADNI database using individual MR-based features, the presented results show that a comprehensive analysis of MRI images combining multiple features improves classification accuracy and predictive power in detecting early AD. The most stable and reliable classification was achieved when combining all available features.
Mild cognitive impairment (MCI) is considered as a transition phase between normal aging and Alzheimer's disease (AD). MCI confers an increased risk of developing AD, although the state is heterogeneous with several possible outcomes, including even improvement back to normal cognition. We sought to determine the serum metabolomic profiles associated with progression to and diagnosis of AD in a prospective study. At the baseline assessment, the subjects enrolled in the study were classified into three diagnostic groups: healthy controls (n=46), MCI (n=143) and AD (n=47). Among the MCI subjects, 52 progressed to AD in the follow-up. Comprehensive metabolomics approach was applied to analyze baseline serum samples and to associate the metabolite profiles with the diagnosis at baseline and in the follow-up. At baseline, AD patients were characterized by diminished ether phospholipids, phosphatidylcholines, sphingomyelins and sterols. A molecular signature comprising three metabolites was identified, which was predictive of progression to AD in the follow-up. The major contributor to the predictive model was 2,4-dihydroxybutanoic acid, which was upregulated in AD progressors (P=0.0048), indicating potential involvement of hypoxia in the early AD pathogenesis. This was supported by the pathway analysis of metabolomics data, which identified upregulation of pentose phosphate pathway in patients who later progressed to AD. Together, our findings primarily implicate hypoxia, oxidative stress, as well as membrane lipid remodeling in progression to AD. Establishment of pathogenic relevance of predictive biomarkers such as ours may not only facilitate early diagnosis, but may also help identify new therapeutic avenues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.