Introduction Therapeutic strategies targeting protein aggregations are ready for clinical trials in atypical parkinsonian disorders. Therefore, there is an urgent need for neuroimaging biomarkers to help with the early detection of neurodegenerative processes, the early differentiation of the underlying pathology, and the objective assessment of disease progression. However, there currently is not yet a consensus in the field on how to describe utility of biomarkers for clinical trials in atypical parkinsonian disorders. Methods To promote standardized use of neuroimaging biomarkers for clinical trials, we aimed to develop a conceptual framework to characterize in more detail the kind of neuroimaging biomarkers needed in atypical parkinsonian disorders, identify the current challenges in ascribing utility of these biomarkers, and propose criteria for a system that may guide future studies. Results As a consensus outcome, we describe the main challenges in ascribing utility of neuroimaging biomarkers in atypical parkinsonian disorders, and we propose a conceptual framework that includes a graded system for the description of utility of a specific neuroimaging measure. We included separate categories for the ability to accurately identify an intention-to-treat patient population early in the disease (Early), to accurately detect a specific underlying pathology (Specific), and the ability to monitor disease progression (Progression). Discussion We suggest that the advancement of standardized neuroimaging in the field of atypical parkinsonian disorders will be furthered by a well-defined reference frame for the utility of biomarkers. The proposed utility system allows a detailed and graded description of the respective strengths of neuroimaging biomarkers in the currently most relevant areas of application in clinical trials.
We studied the rate of progression of striatal dopamine transporter function in Parkinson's disease (PD). Eight patients with early PD without antiparkinsonian medication and 7 healthy volunteers were investigated with [18F]CFT positron emission tomography (PET). The PET scan was carried out twice at an approximate 2‐year interval. The uptake of [18F]CFT was calculated as a region‐cerebellum:cerebellum ratio at 180 to 210 minutes after injection. At the first PET scan, the [18F]CFT uptake in PD patients in the putamen was 1.45 ± 0.45 (mean ± SD) (42% of the control mean) and 2.43 ± 0.59 in the caudate nucleus (76% of the control mean). The ratios declined by the time of the second PET scan, and the rate of annual decline of the baseline mean in PD patients was 13.1% in the putamen and 12.5% in the caudate nucleus. In controls, the corresponding figures were 2.1% for the putamen and 2.9% for the caudate nucleus. The decline in [18F]CFT uptake was significantly higher in PD patients than in controls. Thus, dopamine transporter ligands such as [18F]CFT seem to be sensitive markers for the rate of progression in PD. Ann Neurol 2000;47:804–808
Background In clinical diagnostic imaging, dopamine transporter (DAT) SPECT scans are commonly evaluated using automated semiquantitative analysis software. Age correction is routinely implemented, but usually no sex correction of DAT binding is performed. Since there are sex differences in presynaptic dopaminergic function, we investigated the effect of DAT sex correction in a sample of healthy volunteers who underwent brain [123I]-FP-CIT SPECT. Methods Forty healthy elderly individuals (21 men and 19 women) underwent brain [123I]-FP-CIT SPECT, and each subject was examined clinically for motor and non-motor parkinsonian symptoms and signs. Regional specific DAT binding ratios (SBR = [ROI-occ]/occ) were calculated using age correction, and the results were compared to those in normal databases with and without sex correction. The level of regional abnormality was set at 2 standard deviations below the mean values of the reference databases. Results In the analysis without sex correction, compared to the mean ratio of the reference database, ten healthy individuals (8 men and 2 women) had abnormally low DAT binding ratios, and four individuals (3 men and 1 woman) had borderline low DAT binding ratios in at least one striatal region. When sex correction was implemented, the ratio of one individual was abnormal, and the ratio of one individual was borderline (both males). There were no clinically significant differences in motor or non-motor symptoms between healthy volunteers with abnormal and normal binding. Conclusions A considerable number of elderly healthy male subjects can be interpreted to be dopaminergically abnormal if no sex correction of DAT binding is performed. Sex differences in striatal dopaminergic function should be taken into account when DAT imaging is used to assist clinical diagnostics in patients with suspected neurological disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.