This research work deals with in vivo testing of the efficacy of commercial moisturizer products on the hydration of human skin, as there are various in vitro and ex vivo studies questioning their activity. Confocal Raman spectroscopy was used for this purpose of assessing the efficacy of moisturizers on skin hydration mainly owing to its simple, non-invasive, non-destructive, timesaving, and cost-effective nature. Water content and natural moisturizing factor (NMF) of stratum corneum were analyzed and compared using this method at high wavenumber (2500-4000 cm) and fingerprint (400-1800 cm) spectral regions, respectively, as these two parameters are correlated to skin hydration. Four commercial moisturizer products of different brands were tested on volar forearm region of healthy human female volunteers. This study was conducted for a period of 30 days with 0, 7, and 30 days as time points of analysis. The results of this study clearly indicate that not all the moisturizer products hydrate the skin to the expected levels, and this extent of skin hydration varies with duration of application of these products.
This research work mainly deals with the application of confocal Raman spectroscopic technique to study in vivo human skin penetration of sunscreen products, as there are a lot of controversies associated with their skin penetration. Healthy human volunteers were tested for penetration of two commercial sunscreen products into their volar forearm skin for a period of 2 h. Measurements were taken before and after application of these sunscreen products. All the confocal Raman spectra were pre-processed and then subjected to multivariate two-dimensional principal component analysis and classical least squares analysis to determine the skin penetration of these sunscreens in comparison to the "sunscreen product spectrum" which was considered as the control. Score plots of principal component analysis of confocal Raman spectra indicated clear separation between the spectra before and after application of sunscreen products. Loading plots showed the maximum differences in the spectral region from 1590 to 1626 cm where the characteristic peak of the pure sunscreen products was observed. Classical least squares analysis has shown a significant penetration to a depth of 10 μm in the volar forearm skin of healthy human volunteers for both these sunscreen products. The results confirm that the penetration of these tested sunscreen products was restricted to stratum corneum and also prove that confocal Raman spectroscopy is a simple, fast, nondestructive, and noninvasive semi-quantitative analytical technique for these studies.
Trans-resveratrol (3, 5, 4' trihydroxystilbene, RSV) is a natural compound that shows antioxidant, cardioprotective, anti-inflammatory and anticancer properties. The transdermal, painless application of RSV is an attractive option to other administration routes owing to its several advantages like avoiding gastrointestinal problems and first pass metabolism. However, its therapeutic potential is limited by its low solubility and low stability in water and the reduced permeability of stratum corneum. To overcome these inconveniences the encapsulation of this compound in a drug delivery system is proposed here. In order to find the best carrier for transdermal application of RSV various liposomal nanoparticulate carriers like conventional liposomes (L-RSV), deformable liposomes (LD-RSV), ultradeformable liposomes (LUD-RSV) and ethosomes (Etho-RSV) were assayed. Transmission electron microscopic (TEM) and dynamic light scattering (DLS) studies were performed to analyze the surface morphology of these carriers. Structural characterization for these formulations was performed by confocal Raman spectroscopy. The spectroscopic results were analysed in conjunction with calorimetric data to identify the conformational changes and stability of formulations in the different nanoparticles induced by the presence of RSV. Comparison of the results obtained with the different carrier systems (L-RSV, LD-RSV, LUD-RSV and Etho-RSV) revealed that the best RSV carrier was LD-RSV. The increase in the fluidity of the bilayers in the region of the hydrophobic chains of the phospholipid by ethanol probably facilitates the accommodation of the RSV in the bilayer and contributes to the improved encapsulation of RSV without affecting the mobility of this carrier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.