Many plants employ induced responses against generalist herbivores. Specialist herbivores, however, may employ several mechanisms to overcome the negative effects of induced plant defenses. Here we test how the behavior and development of specialist Manduca sexta larvae are affected by induced responses in their natural host plant Nicotiana attenuata. On a spatial scale relevant to both the plant and the herbivore, we first determined how methyl jasmonate (MeJA)-induced responses, such as increased nicotine production, affect the tendency of larvae to leave induced plants. When larvae were allowed to move between two plants planted in one pot, they left an MeJA-treated plant faster than a control plant. When both plants in the pot were MeJA-treated, the larvae developed more slowly than when both plants were uninduced, or when the larvae had the opportunity to move to an uninduced neighbor. The sooner larvae moved from an MeJA-treated plant to an untreated neighbor, the larger the body mass they attained. This demonstrates that M. sexta larvae can compensate behaviorally for the deleterious effects of induced plant responses. These effects were observed in plants grown under both low and high N supply rates, though the effects were more pronounced under high N. To examine the consequences of the timing and the direction of the host plant switching behavior for larval development, neonate larvae were fed leaves excised from induced and uninduced plants. Larvae confined to MeJA-treated leaves had higher mortality rates and grew slower than larvae fed only control leaves. This demonstrates that MeJA-induced responses decrease growth and development of specialist herbivores that do not have the behavioral option of moving to an uninduced plant. The sooner the larvae were switched to MeJA-treated leaves, the slower their development compared to larvae fed only uninduced leaves. In contrast, the sooner larvae fed MeJA-treated leaves were switched to control leaves, the faster they developed. Again the effects of MeJA treatment were stronger in plants grown under high N supply. We propose that induced plants growing in close competition with an uninduced conspecific may offset the fitness costs of these induced responses and perhaps obtain a fitness benefit by motivating herbivores to move to their neighboring competitors.
The cabbage root fly, Delia radicum L. (Diptera: Anthomyiidae), has a life cycle with spatially separated components: adults live and oviposit above ground, whereas larvae feed and pupate below ground. Oviposition choice is affected by shoot glucosinolates. However, little is known about below‐ground plant defence against D. radicum. Here, we investigate the effect of glucosinolates on oviposition preference and performance of D. radicum, using two naturally occurring heritable chemotypes of Barbarea vulgaris R. Br. (Brassicaceae) with different glucosinolate profiles: BAR‐type plants (the most common and genetically dominant glucosinolate profile, dominated by glucobarbarin) and NAS‐type plants (the recessive phenotype, dominated by gluconasturtiin). Performance was studied by applying 10 neonate D. radicum larvae per plant and measuring pupal biomass after 18 days. There was no difference in retrieval, but pupae had a higher biomass after development on BAR‐type plants. On average, BAR‐type plants received 1.8 times more eggs than NAS types, but this difference was not statistically significant. In a separate experiment, we compared the physiological response of both chemotypes to D. radicum feeding. Infestation reduced root and shoot biomass, root sugar and amino acid levels, and shoot sugar levels. Except for shoot sugar levels, these responses did not differ between the two chemotypes. Shoot or root glucosinolate profiles did not change on infestation. As glucosinolate profiles were the only consistent difference between the chemotypes, it is likely that this difference caused the reduced biomass of D. radicum pupae on NAS‐type plants. In an experimental garden, plants were heavily infested by root flies, but we found no differences in the percentage of fallen‐over flower stalks between the chemotypes. Overall, we found more pupae in the soil near BAR‐type plants, but this was not statistically significant. The results of the performance experiment suggest that BAR‐type plants may be more suitable hosts than NAS‐type plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.