We present unconditionally energy-stable second-order time-accurate schemes for diffuse-interface (phase-field) models; in particular, we consider the Cahn-Hilliard equation and a diffuse-interface tumor-growth system consisting of a reactive Cahn-Hilliard equation and a reaction-diffusion equation. The schemes are of the Crank-Nicolson type with a new convex-concave splitting of the free energy and an artificial-diffusivity stabilization. The case of nonconstant mobility is treated using extrapolation. For the tumor-growth system, a semi-implicit treatment of the reactive terms and additional stabilization are discussed. For suitable free energies, all schemes are linear. We present numerical examples that verify the second-order accuracy, unconditional energy-stability, and superiority compared with their first-order accurate variants.
A crucial aspect in boundary-coupled problems, such as fluid-structure interaction, pertains to the evaluation of fluxes. In boundary-coupled problems, the flux evaluation appears implicitly in the formulation and consequently, improper flux evaluation can lead to instability. Finite-element approximations of primal and dual problems corresponding to improper formulations can therefore be nonconvergent or display suboptimal convergence rates. In this paper, we consider the main aspects of flux evaluation in finite-element approximations of boundary-coupled problems. Based on a model problem, we consider various formulations and illustrate the implications for corresponding primal and dual problems. In addition, we discuss the extension to free-boundary problems, fluid-structure interaction, and electro-osmosis applications.
We introduce a duality-based two-level error estimator for linear and nonlinear time-dependent problems. The error measure can be a space-time norm, energy norm, final-time error or other error related functional. The general methodology is developed for an abstract nonlinear parabolic PDE and subsequently applied to linear heat and nonlinear Cahn-Hilliard equations. The error due to finite element approximations is estimated with a residual weighted approximate-dual solution which is computed with two primal approximations at nested levels. We prove that the exact error is estimated by our estimator up to higher-order remainder terms. Numerical experiments confirm the theory regarding consistency of the dual-based two-level estimator. We also present a novel space-time adaptive strategy to control errors based on the new estimator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.