When designing a magnetic levitation system it is assumed that the magnets are ideally magnetized. In practice, however, this is not the case and deviations occur in the magnetization. In this paper two types of deviations are considered, namely a constant angular deviation and the magnetization error. Calculations show that a constant error has larger impact on the performance of a gravity compensator than the magnetization error.
Abstract:In this paper a cross-shaped isolator consisting of cuboidal magnets and a cylindrical isolator are compared by resonance frequency to volume ratio and shape. Both isolators are capable of obtaining a low resonance frequency, i.e. 0.15 Hz and 0.01 Hz for the cross and cylinder, respectively. The volume of both isolators is comparable, only the shape is different, resulting in a tall structure with a small footprint for the cross and a flat with a large diameter cylindrical structure. A sensitivity analysis shows that due to the large amount of magnets, the cross-shaped isolator is less sensitive to manufacturing tolerances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.