In CaCO3, biomineralization nucleation and growth of the crystals are related to the presence of carboxylate-rich proteins within a macromolecular matrix, often with organized beta-sheet domains. To understand the interplay between the organic template and the mineral crystal it is important to explicitly address the issue of structural adaptation of the template during mineralization. To this end we have developed a series of self-organizing surfactants (1-4) consisting of a dodecyl chain connected via a bisureido-heptylene unit to an amino acid head group. In Langmuir monolayers the spacing of these molecules in one direction is predetermined by the hydrogen-bonding distances between the bis-urea units. In the other direction, the intermolecular distance is determined by steric interactions introduced by the side groups (-R) of the amino acid moiety. Thus, by the choice of the amino acid we can systematically alter the density of the surfactant molecules in a monolayer and their ability to respond to the presence of calcium ions. The monolayer films are characterized by surface pressure-surface area (pi-A) isotherms, Brewster angle microscopy, in-situ synchrotron X-ray scattering at fixed surface area, and also infrared reflection absorption spectroscopy (IRRAS) of films transferred to solid substrates. The developing crystals are studied with scanning and transmission electron microscopy (SEM, TEM), selected area electron diffraction (SAED), and crystal modeling. The results demonstrate that although all compounds are active in the nucleation of calcium carbonate, habit modification is only observed when the size of the side group allows the molecules to rearrange and adapt their organization in response to the mineral phase.
A symmetrical, hydrogen bonded low molecular weight molecule N,N′-1,2-ethanediyl-bis(6-hydroxy-hexanamide), crystallized from melt or from the superheated state of water, is examined. Thermodynamic and structural changes during phase transitions are followed by DSC, time-resolved X-ray techniques and polarized optical microscopy. Considering the hydrogen bonding motifs present in this bisamide-diol, it is selected as a model compound for crystalline domains present in semicrystalline polyamides. By studying this model compound it was moreover aimed to elucidate the specific role of water molecules that are likely to reside in the crystals obtained from the superheated state of water. On heating the melt crystallized sample, the observed crystalline transitions are not the same as observed in polyamides. However, similar to polyamides the origin of the transition is due to the electron exchange between the hydrogen bonding moieties and conformational changes in the aliphatic sequences. At low temperatures (below 22 °C) non-trans conformations in the central diamine methylene moieties induce a different triclinic structure, having unit cell parameters close to monoclinic, with potential existence of intersheet hydrogen bonding. Crystallization from superheated water entails remarkable differences in the physical behavior. A metastable crystalline structure, obtained from the superheated state of water and having relatively large interchain and intersheet distances, transforms into another hydrogen bonded crystal via sequential temperature cycles. When compared with the melt crystallized sample the crystal obtained after sequential temperature cycles show considerable difference in the crystal-to-crystal phase transition while melting remains the same. In combination with the increased crystal-to-crystal transition temperature, an expansion along the c-axis suggests a stabilizing effect of rigid hydroxylic protons that contribute to the unit cell parameters.
Here we present a surfactant molecule (1) containing an ammonium headgroup, in which a bis-ureido group is incorporated in its hydrocarbon chain. Due to strong hydrogen bonding interactions, 1 forms well-defined highly ordered ribbon-like aggregates in water. Moreover, we demonstrate that these ribbons can be functionalized via a modular approach through molecular recognition of other bis-urea containing molecules. The dye disperse orange and biotin were coupled to matching bis-ureido groups and incorporated into the ribbon structure. The anchoring of different functionalities in a modular approach proved to be possible using the molecular recognition capabilities of the bis-ureido moiety, thereby opening possibilities to a wide range of applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.