Abstract:We demonstrate a continuous wave (CW) sub-wavelength metallic-cavity semiconductor laser with electrical injection at room temperature (RT). Our metal-cavity laser with a cavity volume of 0.67λ 3 (λ = 1591 nm) shows a linewidth of 0.5 nm at RT, which corresponds to a Qvalue of 3182 compared to 235 of the cavity Q, the highest Q under lasing condition for RT CW operation of any sub-wavelength metallic-cavity laser. Such record performance provides convincing evidences of the feasibility of RT CW sub-wavelength metallic-cavity lasers, thus opening a wide range of practical possibilities of novel nanophotonic devices based on metal-semiconductor structures.
Heterogeneous integration of III-V semiconductor materials on a silicon-on-insulator (SOI) platform has recently emerged as one of the most promising methods for the fabrication of active photonic devices in silicon photonics. For this integration, it is essential to have a reliable and robust bonding procedure, which also provides a uniform and ultra-thin bonding layer for an effective optical coupling between III-V active layers and SOI waveguides. A new process for bonding of III-V dies to processed siliconon-insulator waveguide circuits using divinylsiloxane-bis-benzocyclobutene (DVS-BCB) was developed using a commercial wafer bonder. This "cold bonding" method significantly simplifies the bonding preparation for machine-based bonding both for die and wafer-scale bonding. High-quality bonding, with ultra-thin bonding layers (<50 nm) is demonstrated, which is suitable for the fabrication of heterogeneously integrated photonic devices, specifically hybrid III-V/Si lasers. K. Mayora, "Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding," J. Micromech. Microeng. 14(7), 1047-1056 (2004
DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
We experimentally study surface plasmon lasing in a series of metal hole arrays on a gold-semiconductor interface. The sub-wavelength holes are arranged in square arrays of which we systematically vary the lattice constant and hole size. The semiconductor medium is optically pumped and operates at telecom wavelengths (λ ~ 1.5 μm). For all 9 studied arrays, we observe surface plasmon (SP) lasing close to normal incidence, where different lasers operate in different plasmonic bands and at different wavelengths. Angle- and frequency-resolved measurements of the spontaneous emission visualizes these bands over the relevant (ω, k||) range. The observed bands are accurately described by a simple coupled-wave model, which enables us to quantify the backwards and right-angle scattering of SPs at the holes in the metal film.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.