Summary SWEETs play important roles in intercellular sugar transport. Induction of SWEET sugar transporters by Transcription Activator‐Like effectors (TALe) of Xanthomonas ssp. is key for virulence in rice, cassava and cotton. We identified OsSWEET11b with roles in male fertility and potential bacterial blight (BB) susceptibility in rice. While single ossweet11a or 11b mutants were fertile, double mutants were sterile. As clade III SWEETs can transport gibberellin (GA), a key hormone for spikelet fertility, sterility and BB susceptibility might be explained by GA transport deficiencies. However, in contrast with the Arabidopsis homologues, OsSWEET11b did not mediate detectable GA transport. Fertility and susceptibility therefore are likely to depend on sucrose transport activity. Ectopic induction of OsSWEET11b by designer TALe enabled TALe‐free Xanthomonas oryzae pv. oryzae (Xoo) to cause disease, identifying OsSWEET11b as a potential BB susceptibility gene and demonstrating that the induction of host sucrose uniporter activity is key to virulence of Xoo. Notably, only three of six clade III SWEETs are targeted by known Xoo strains from Asia and Africa. The identification of OsSWEET11b is relevant for fertility and for protecting rice against emerging Xoo strains that target OsSWEET11b.
Bacterial leaf blight (BB) of rice, caused by Xanthomonas oryzae pv. oryzae (Xoo), threatens global food security and the livelihood of small-scale rice producers. Analyses of Xoo collections from Asia, Africa and the Americas demonstrated surprising continental segregation, despite robust global rice trade. Here, we report unprecedented BB outbreaks in Tanzania. The causative strains, unlike endemic Xoo, carry Asian-type TAL effectors targeting the sucrose transporter SWEET11a and suppressing Xa1. Phylogenomics clustered these strains with Xoo strains from China. African rice varieties do not carry suitable resistance genes. To protect African rice production against this emerging threat, we developed a hybrid CRISPR-Cas9/Cpf1 system to edit six TALe-binding elements in three SWEET promoters of the East African elite variety Komboka. The edited lines show broad-spectrum resistance against Asian and African strains of Xoo, including strains recently discovered in Tanzania. This strategy could help to protect global rice crops from BB pandemics.
Bacterial leaf blight (BB) of rice, caused by Xanthomonas oryzae pv. oryzae (Xoo), threatens global food security and the livelihood of small-scale rice producers. Analyses of Xoo collections from Asia, Africa and the Americas demonstrated complete continental segregation, despite robust global rice trade. Here, we report unprecedented BB outbreaks in Tanzania. The causative strains, unlike endemic African Xoo, carry Asian-type TAL effectors targeting the sucrose transporter SWEET11a and iTALes suppressing Xa1. Phylogenomics clustered these strains with Xoo from Southern-China. African rice varieties do not carry effective resistance. To protect African rice production against this emerging threat, we developed a hybrid CRISPR-Cas9/Cpf1 system to edit all known TALe-binding elements in three SWEET promoters of the East African elite variety Komboka. The edited lines show broad-spectrum resistance against Asian and African strains of Xoo, including strains recently discovered in Tanzania. The strategy could help to protect global rice crops from BB pandemics.
Rice yellow mottle virus (RYMV) causes one of the most devastating rice diseases in Africa. Management of RYMV is challenging. Genetic resistance provides the most effective and environment-friendly control. The recessive resistance locus rymv2 (OsCPR5.1) had been identified in African rice (O. glaberrima), however, introgression into O. sativa ssp. japonica and indica remains challenging due to crossing barriers. Here, we evaluated whether CRISPR/Cas9 genome editing of the two rice nucleoporin paralogs OsCPR5.1 (RYMV2) and OsCPR5.2 can be used to introduce RYMV resistance into the japonica variety Kitaake. Both paralogs had been shown to complement the defects of the Arabidopsis atcpr5 mutant, indicating partial redundancy. Despite striking sequence and structural similarities between the two paralogs, only oscpr5.1 loss-of-function mutants were fully resistant, while loss-of-function oscpr5.2 mutants remained susceptible, intimating that OsCPR5.1 plays a specific role in RYMV susceptibility. Notably, edited lines with short in-frame deletions or replacements in the N-terminal domain (predicted to be unstructured) of OsCPR5.1 were hypersusceptible to RYMV. In contrast to mutations in the single Arabidopsis AtCPR5 gene, which caused severely dwarfed plants, oscpr5.1 and oscpr5.2 single knockout mutants show neither substantial growth defects nor symptoms indicative of programmed cell death, possibly reflecting functional redundancy of the isoforms regarding other important functions. The specific editing of OsCPR5.1, while maintaining OsCPR5.2 activity, provides a promising strategy for generating RYMV-resistance in elite Oryza sativa lines as well as for effective stacking with other RYMV resistance genes or other traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.