Bacterial adhesion and subsequent biofilm formation on material surfaces represent a serious problem in society from both an economical and health perspective. Surface coating approaches to prevent bacterial adhesion and biofilm formation are of increased importance due to the increasing prevalence of antibiotic resistant bacterial strains. Effective antimicrobial surface coatings can be based on an anti-adhesive principle that prevents bacteria to adhere, or on bactericidal strategies, killing organisms either before or after contact is made with the surface. Many strategies, however, implement a multifunctional approach that incorporates both of these mechanisms. For anti-adhesive strategies, the use of polymer chains, or hydrogels is preferred, although recently a new class of super-hydrophobic surfaces has been described which demonstrate improved anti-adhesive activity. In addition, bacterial killing can be achieved using antimicrobial peptides, antibiotics, chitosan or enzymes directly bound, tethered through spacer-molecules or encased in biodegradable matrices, nanoparticles and quaternary ammonium compounds. Notwithstanding the ubiquitous nature of the problem of microbial colonization of material surfaces, this review focuses on the recent developments in antimicrobial surface coatings with respect to biomaterial implants and devices. In this biomedical arena, to rank the different coating strategies in order of increasing efficacy is impossible, since this depends on the clinical application aimed for and whether expectations are short- or long term. Considering that the era of antibiotics to control infectious biofilms will eventually come to an end, the future for biofilm control on biomaterial implants and devices is likely with surface-associated modifications that are non-antibiotic related.
Class I Hydrophobins self-assemble at hydrophilic-hydrophobic interfaces into a highly insoluble amphipathic film. Upon self-assembly of these fungal proteins hydrophobic solids turn hydrophilic, while hydrophilic materials can be made hydrophobic. Hydrophobins thus change the nature of a surface. This property makes them interesting candidates to improve physio- and physico-chemical properties of implant surfaces. We here show that growth of fibroblasts on Teflon can be improved by coating the solid with genetically engineered SC3 hydrophobin. Either deleting a stretch of 25 amino acids at the N-terminus of the mature hydrophobin (TrSC3) or fusing the RGD peptide to this end (RGD-SC3) improved growth of fibroblasts on the solid surface. In addition, we have shown that assembled SC3 and TrSC3 are not toxic when added to the medium of a cell culture of fibroblasts in amounts up to 125 microg ml(-1).
A parallel-plate flow chamber is developed in order to study cellular adhesion phenomena. An image analysis system is used to observe individual cells exposed to flow in situ and to determine area, perimeter, and shape of these cells as a function of time and shear stress. With this flow system the behavior of human fibroblasts spread on glass is studied when exposed to an increasing laminar flow. The flow system appears to be well-suited for following individual cells during detachment. After 75 to 90 min, at a shear stress of 350 dynes/cm2, more than 50% of the spread cells are detached from the surface. Cells with higher spreading areas stay longer at the glass surface. Cells round up before detaching. Sometimes the cell body is attached to the substratum through a thin filament during detachment. At the scanning electron microscopy level numerous filopodial extensions are observed. Cell material could only rarely be observed at the light or scanning electron microscopic level on the substratum once a cell was detached.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.