The new peptide hormone insulin-like peptide 3 (INSL3) is a member of the insulin-relaxin family, yet, unlike insulin, it signals through a new G-protein coupled receptor, LGR8, distantly related to the receptors for LH and FSH. INSL3 is produced in large amounts by the Leydig cells of the testis in both fetal and adult mammals. Using a combination of mRNA analysis by RT-PCR, immunohistochemistry, ligand-binding, and/or bioactivity assays, the distribution of LGR8 expression was assessed in testicular tissues and cells and in the epididymis. There was consistent agreement that LGR8 was expressed in meiotic and particularly postmeiotic germ cells and in Leydig cells, though not in Sertoli or peritubular cells. Leydig cells appear to express only a low level of the LGR8 gene product; other transcripts may be present, representing nonfunctional products. Messenger RNA analysis suggested that LGR8 transcripts in germ cells represented mostly full-length forms. LGR8 mRNA was also expressed in the epididymis, though no function can yet be ascribed to this expression. Therefore, the INSL3/LGR8 system represents a further paracrine hormone-receptor system in the testis, which conveys information about Leydig cell status to germ cells, and possibly as part of an autocrine feedback loop.
Strategies to study genomics, epigenomics and gene-environment interaction will yield greater insight into the shared pathogenesis of lung cancer and COPD, leading to new diagnostic and therapeutic modalities.
The aim of this study was to detect, isolate and characterize the nanobacteria from human renal stones from a north Indian population, and to determine their role in biomineralization. Renal stones retrieved from the kidneys of 65 patients were processed and subjected to mammalian cell culture conditions. The isolated bacteria were examined using scanning (SEM) and transmission electron microscopy (TEM). They were characterized for the presence of DNA, proteins and antigenicity. The role of these bacteria in biomineralization was studied by using the (14)C-oxalate based calcium oxalate monohydrate (COM) crystallization assay. We observed the presence of apatite forming, ultrafilterable gram negative, coccoid microorganisms in 62% of the renal stones. SEM studies revealed 60-200 nm sized organisms with a distinct cell wall and a capsule. TEM images showed needle like apatite structures both within and surrounding them. They were heat sensitive, showed antibiotic resistance and accelerated COM crystallization. A potent signal corresponding to the presence of DNA was observed in demineralized nanobacterial cells by flow cytometry. The protein profile showed the presence of several peptide bands of which those of 18 kDa and 39kDa were prominent. Apatite forming nanosized bacteria are present in human renal stones and may play a role in the pathophysiology of renal stone formation by facilitating crystallization and biomineralization. However, further studies are required to establish the exact mechanism by which nanobacteria are involved in the causation of renal stones.
Our objective was to investigate the association between the vitamin D receptor (VDR) allelic variants (Bsm I and Fok I) and nephrolithiasis in northern India. A total of 150 nephrolithiatic patients and 100 age and sex matched controls were enrolled for study. A 10 ml blood sample was obtained for biochemical analysis and DNA isolation. In addition, 24 h urine samples were obtained from each patient for the estimation of calcium and creatinine. PCR was performed for the Bsm I and Fok I VDR variants. The association between Bsm I and Fok I VDR polymorphism and nephrolithiasis was investigated after digestion with restriction enzymes (3 U). The product was analysed on 3% agarose gel for Bsm I and 15% polyacrylamide gel for Fok I allelic variants. We did not observe any significant differences in the prevalence of either the Bsm I or Fok I VDR genotypes between stone formers and controls. The B allele was found to be more prevalent in hypercalciuric patients compared to controls and nephrolithiatic subjects. The subjects with the bb genotype exhibited a higher calcium excretion than the BB genotype. Patients with the F allele were also found to excrete higher urinary calcium. VDR genotypes may be associated with increased calcium excretion in hypercalciuric nephrolithiatic subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.