We addressed the requirement for stromal interaction molecule 1 (STIM1), the endoplasmic reticulum (ER) Ca 2ϩ -sensor, and Orai1, a Ca 2ϩ selective channel, in regulating Ca 2ϩ entry through the store-operated channels mouse transient receptor potential canonical (TRPC) 4 or human TRPC1. Studies were made using murine and human lung endothelial cells (
Here we show that the transcription-repressor DREAM binds to the A20 promoter to repress the expression of A20, the deubiquitinase suppressing inflammatory NF-κB signaling. DREAM-deficient (Dream−/−) mice displayed persistent and unchecked A20 expression in response to endotoxin. DREAM functioned by transcriptionally repressing A20 through binding to downstream regulatory elements (DREs). In contrast, USF1 binding to the DRE-associated E-box domain activated A20 expression in response to inflammatory stimuli. These studies define the critical opposing functions of DREAM and USF1 in inhibiting and inducing A20 expression, respectively, and thereby the strength of NF-κB signaling. Targeting of DREAM to induce USF1-mediated A20 expression is therefore a potential anti-inflammatory strategy in diseases such as acute lung injury associated with unconstrained NF-κB activity.
Diabetes mellitus renders both widespread and localized irreversible damage to peripheral axons while imposing critical limitations on their ability to regenerate. A major failure of regenerative capacity thereby imposes a 'double hit' in diabetic patients who frequently develop focal neuropathies such as carpal tunnel syndrome in addition to generalized diffuse polyneuropathy. The mechanisms of diabetic neuron regenerative failure have been speculative and few approaches have offered therapeutic opportunities. In this work we identify an unexpected but major role for PTEN upregulation in diabetic peripheral neurons in attenuating axon regrowth. In chronic diabetic neuropathy models in mice, we identified significant PTEN upregulation in peripheral sensory neurons of messenger RNA and protein compared to littermate controls. In vitro, sensory neurons from these mice responded to PTEN knockdown with substantial rises in neurite outgrowth and branching. To test regenerative plasticity in a chronic diabetic model with established neuropathy, we superimposed an additional focal sciatic nerve crush injury and assessed morphological, electrophysiological and behavioural recovery. Knockdown of PTEN in dorsal root ganglia ipsilateral to the side of injury was achieved using a unique form of non-viral short interfering RNA delivery to the ipsilateral nerve injury site and paw. In comparison with scrambled sequence control short interfering RNA, PTEN short interfering RNA improved several facets of regeneration: recovery of compound muscle action potentials, reflecting numbers of reconnected motor axons to endplates, conduction velocities of both motor and sensory axons, reflecting their maturation during regrowth, numbers and calibre of regenerating myelinated axons distal to the injury site, reinnervation of the skin by unmyelinated epidermal axons and recovery of mechanical sensation. Collectively, these findings identify a novel therapeutic approach, potentially applicable to other neurological conditions requiring specific forms of molecular knockdown, and also identify a unique target, PTEN, to treat diabetic neuroregenerative failure.
Our study demonstrates that SSTR2-agonist is the most potent inhibitor of insulin and glucagon secretion from isolated human pancreatic islets. Furthermore, we identify SSTR1- and SSTR5-selective agonists as additional inhibitors of insulin and glucagon secretion from human pancreas.
In the peripheral nervous system, Schwann cells (SCs) promote nerve regeneration by the secretion of trophic support molecules and the establishment of a supportive growth matrix. Elucidating factors that promote SC outgrowth following nerve injury is an important strategy for improving nerve regeneration. We identified the Netrin-1 receptors, Deleted in Colorectal Cancer (DCC) and Uncoordinated (Unc)5H2 as SC receptors that influence nerve regeneration by respectively promoting or inhibiting SC outgrowth. Significantly, we show both DCC and Unc5H2 receptors are distributed within SCs. In adult nerves, DCC is localized to the paranodes and Schmidt-Lantermann incisures of myelinating SCs, as well as along unmyelinated axons. After axotomy, DCC is prominently expressed in activated SCs at the regenerating nerve front. In contrast, Unc5H2 receptor is robustly distributed in myelinating SCs of the intact nerve and it is found at low levels in the SCs of the injury site. Local in vivo DCC siRNA mRNA knockdown at the growing tip of an injured nerve impaired SC activation and, in turn, significantly decreased axon regeneration. This forced DCC inhibition was associated with a dramatic reciprocal upregulation of Unc5H2 in the remaining SCs. Local Unc5H2 knockdown at the injury site, however, facilitated axon regrowth, indicating it has a role as an intrinsic brake to peripheral nerve regeneration. Our findings demonstrate that in adult peripheral nerves, SCs respond to DCC and Unc5H2 signaling, thereby promoting or hindering axon outgrowth and providing a novel mechanism for SC regulation during nerve regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.