Serum albumins are multi-domain all α-helical proteins that are present in the circulatory system and aid in the transport of a variety of metabolites, endogenous ligands, drugs etc. Earlier observations have indicated that serum albumins adopt a range of reversible conformational isomers depending on the pH of the solution. Herein, we report the concurrent changes in the protein conformation and size that are inherent to the pH-induced conformational isomers of bovine serum albumin (BSA). We have investigated the fluorescence properties of both intrinsic (tryptophan) and extrinsic (ANS, pyrene) fluorophores to shed light into the structural features of the pH-dependent conformers. We have been able to identify a number of conformational isomers using multiple fluorescence observables as a function of pH titration. Our results indicate that at pH 3, a partially-folded, 'molten-globule-like' state is populated. Moreover, equilibrium unfolding studies indicated that the 'molten-globule-like' state unfolds in a non-cooperative fashion and is thermodynamically less stable than the native state. The fluorescence-based approach described in the present work has implications in the study of pH-induced conformational plasticity of other physiologically relevant proteins.
Fibrous properties of rayon has been modified through synthesis of graft copolymers of rayon with acrylonitrile (AN) by chemical method using ceric ammonium nitrate (CAN/HNO3) as a redox initiator and gamma radiation mutual method. Percentage of grafting (Pg) was determined as a function of initiator concentration, monomer concentration, irradiation dose, temperature, time of reaction and the amount of water. Maximum percentage of grafting (160.01%) using CAN/HNO3 was obtained at [CAN] = 22.80 × 10−3 mol/L, [HNO3] = 112.68 × 10−2 mol/L and [AN] = 114.49 × 10−2 mol/L in 20 mL of water at 45 °C within 120 min while in case of gamma radiation method, maximum Pg (90.24%) was obtained at an optimum concentration of AN of 76.32 × 10−2 mol/L using 10 mL of water at room temperature with total dose exposure of 3.456 kGy/h. The grafted fiber was characterized by FTIR, SEM, TGA and XRD studies. Swelling behavior of grafted rayon in different solvents such as water, methanol, ethanol, DMF and acetone was studied and compared with the unmodified rayon. Dyeing behavior of the grafted fiber was also investigated.
A polymer-supported (PS) phase transfer catalyst, polyethylene-g-quaternary ammonium salt (PE-g-Q N þ ), is prepared through a three-step graft copolymerization of maleic anhydride (MAn) onto polyethylene (PE) by photochemical method using 1% benzophenone (Bz) as photosensitizer. Post grafted acid hydrolysis of polyethylene-g-maleic anhydride (PE-g-MAn) results in the preparation of PE-g-succinic acid which on further treatment with tetrabutylammonium bromide (TBAB) under basic conditions in tetrahydrofuran (THF) gives PE-g-Q N þ . Optimum conditions pertaining to maximum percentage of grafting have been evaluated as a function of concentration of maleic anhydride, amount of photosensitizer, and time of reaction. Maximum percentage of grafting (25%) was obtained using 3.57 mol of MAn and 0.5 mL of 1% Bz in 120 min. The PE and graft copolymers, PE-g-MAn, and PE-g-Q N þ were characterized by FTIR Spectroscopy and thermogravimetric analysis (TGA). The ionic nature of quaternary ammonium salt, PE-g-Q N þ has also been confirmed by conductance measurements. PE-g-Q N þ reagent have been used successfully for polymerization, amidation, and esterification reactions. The products obtained were characterized by FTIR and H 1 NMR spectral methods. The reagent was reused for the further reactions and it was observed that the polymeric reagent polymerize, amidate, and esterificate the compounds successfully but with little lower product yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.