Cystic fibrosis patients are highly susceptible to infections with non-tuberculous mycobacteria. Especially Mycobacterium abscessus infections are common but reliable diagnosis is hampered by non-specific clinical symptoms and insensitive mycobacterial culture. In the present study we established novel methods for rapid detection and immune characterization of Mycobacterium abscessus infection in cystic fibrosis patients. We performed Mycobacterium abscessus specific DNA-strip- and quantitative PCR-based analyses of non-cultured sputum samples to detect and characterize Mycobacterium abscessus infections. Concomitantly in vitro T-cell reactivation with purified protein derivatives (PPDs) from different mycobacterial species was used to determine Mycobacterium abscessus specific T-cell cytokine expression of infected cystic fibrosis patients. Four of 35 cystic fibrosis patients (11.4%) were Mycobacterium abscessus culture positive and showed concordant DNA-strip-test results. Quantitative PCR revealed marked differences of mycobacterial burden between cystic fibrosis patients and during disease course. Tandem-repeat analysis classified distinct Mycobacterium abscessus strains of infected cystic fibrosis patients and excluded patient-to-patient transmission. Mycobacterium abscessus specific T-cells were detected in the blood of cystic fibrosis patients with confirmed chronic infection and a subgroup of patients without evidence of Mycobacterium abscessus infection. Comparison of cytokine expression and phenotypic markers revealed increased proportions of CD40L positive T-cells that lack Interleukin-2 expression as a marker for chronic Mycobacterium abscessus infections in cystic fibrosis patients. Direct sputum examination enabled rapid diagnosis and quantification of Mycobacterium abscessus in cystic fibrosis patients. T-cell in vitro reactivation and cytokine expression analyses may contribute to diagnosis of chronic Mycobacterium abscessus infection.
Macrophages are natural host cells for pathogenic mycobacteria, like Mycobacterium tuberculosis (M.tb). Immune surveillance by T cells and interaction with M.tb infected macrophages is crucial for protection against M.tb reactivation and development of active tuberculosis. Several factors play a role in the control of M.tb infection but reliable biomarkers remain elusive. One major obstacle is the absence of functional in vitro assays which allow concomitant determination of i) mycobacterial eradication; ii) cytotoxic effects on host macrophages; and iii) effector T-cell functions. We established a novel functional in vitro assay based on flow cytometry analysis of monocyte-derived macrophages (MDM) infected with a Mycobacterium bovis BCG strain containing a tetracycline inducible live/dead reporter plasmid (LD-BCG). MDM of healthy human donors were generated in vitro and infected with defined LD-BCG numbers. After short-term MDM/LD-BCG co-incubation with autologous effector T cells or in the presence of antibiotics, proportions of MDM containing live or dead LD-BCG were determined by flow cytometry. Concomitant measure of defined numbers of added beads allowed comparison of absolute MDM numbers between samples. Differential effects of T-cell subpopulations on anti-mycobacterial cytotoxicity and on MDM apoptosis were determined. Flow cytometry measure of MDM/LD-BCG treated with rifampicin correlated well with mycobacterial colony forming units and fluorescence microscopy results. Co-culture with pre-activated effector T cells reduced viability of both, LD-BCG and MDM, in a concentration-dependent manner. M.tb protein specific CD4+ and CD8+ T-cells contributed similarly to anti-mycobacterial cytotoxicity but CD4+ T cells induced higher levels of apoptosis in infected MDMs. This novel assay enables rapid quantification of anti-mycobacterial cytotoxicity and characterization of effector functions. Our functional in vitro assay has the potential to contribute to the identification of biomarkers for protective T-cell responses against tuberculosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.