IntroductionHemorrhage is the principal cause of death in the first few hours following severe injury. Coagulopathy is a frequent complication of critical bleeding. A network of Italian trauma centers recently developed a protocol to prevent and treat trauma-induced coagulopathy. A pre-post cohort multicenter study was conducted to assess the impact of the early coagulation support (ECS) protocol on blood products consumption, mortality and treatment costs.MethodsWe prospectively collected data from all severely injured patients (Injury Severity Score (ISS) >15) admitted to two trauma centers in 2013 and compared these findings with the data for 2011. Patients transfused with at least 3 units of packed red blood cells (PRBCs) within 24 hours of an accident were included in the study. In 2011, patients with significant hemorrhaging were treated with early administration of plasma with the aim of achieving a high (≥1:2) plasma-to-PRBC ratio. In 2013, the ECS protocol was the treatment strategy. Outcome data, blood product consumption and treatment costs were compared between the two periods.ResultsThe two groups were well matched for demographics, injury severity (ISS: 32.9 in 2011 versus 33.6 in 2013) and clinical and laboratory data on admission. In 2013, a 40% overall reduction in PRBCs was observed, together with a 65% reduction in plasma and a 52% reduction in platelets. Patients in the ECS group received fewer blood products: 6.51 units of PRBCs versus 8.14 units. Plasma transfusions decreased from 8.98 units to 4.21 units (P <0.05), and platelets fell from 4.14 units to 2.53 units (P <0.05). Mortality in 2013 was 13.5% versus 20% in 2011 (13 versus 26 hospital deaths, respectively) (nonsignificant). When costs for blood components, factors and point-of-care tests were compared, a €76,340 saving in 2013 versus 2011 (23%) was recorded.ConclusionsThe introduction of the ECS protocol in two Italian trauma centers was associated with a marked reduction in blood product consumption, reaching statistical significance for plasma and platelets, and with a non-significant trend toward a reduction in early and 28-day mortality. The overall costs for transfusion and coagulation support (including point-of-care tests) decreased by 23% between 2011 and 2013.
This article explores the application of viscoelastic tests (VETs) in trauma-induced coagulopathy and trauma resuscitation. We describe the advantages of VETs over conventional coagulation tests in the trauma setting and refer to previous disciplines in which VET use has reduced blood product utilization, guided prohemostatic agents, and improved clinical outcomes such as the mortality of critically bleeding patients. We describe different VETs and provide guidance for blood component therapy and prohemostatic therapy based on specific VET parameters. Because the two most commonly used VET systems, rotational thromboelastometry and thromboelastography, use different activators and have different terminologies, this practical narrative review will directly compare and contrast these two VETs to help the clinician easily interpret either and use the interpretation to determine hemostatic integrity in the bleeding trauma patient. Finally, we anticipate the future of new viscoelastic technologies that can be used in this setting.
Essentials Genetic predisposition to acquired thrombotic thrombocytopenic purpura (aTTP) is mainly unknown. Genetic risk factors for aTTP were studied by Immunochip analysis and replication study. Human leukocyte antigen (HLA) variant rs6903608 conferred a 2.5-fold higher risk of developing aTTP. rs6903608 and HLA-DQB1*05:03 may explain most of the HLA association signal in aTTP. Click to hear Dr Cataland's presentation on acquired thrombotic thrombocytopenic purpura SUMMARY: Background Acquired thrombotic thrombocytopenic purpura (TTP) is a rare, life-threatening thrombotic microangiopathy associated with the development of autoantibodies against the von Willebrand factor-cleaving protease ADAMTS-13. Similarly to what has been found for other autoimmune disorders, there is evidence of a genetic contribution, including the association of the human leukocyte antigen (HLA) class II complex with disease risk. Objective To identify novel genetic risk factors in acquired TTP. Patients/Methods We undertook a case-control genetic association study in 190 European-origin TTP patients and 1255 Italian healthy controls by using the Illumina Immunochip. Replication analysis in 88 Italian cases and 456 controls was performed with single-nucleotide polymorphism (SNP) TaqMan assays. Results and conclusion We identified one common variant (rs6903608) located within the HLA class II locus that was independently associated with acquired TTP at genome-wide significance and conferred a 2.6-fold increased risk of developing a TTP episode (95% confidence interval [CI] 2.02-3.27, P = 1.64 × 10 ). We also found five non-HLA variants mapping to chromosomes 2, 6, 8 and X that were suggestively associated with the disease: rs9490550, rs115265285, rs5927472, rs7823314, and rs1334768 (nominal P-values ranging from 1.59 × 10 to 7.60 × 10 ). Replication analysis confirmed the association of HLA variant rs6903608 with acquired TTP (pooled P = 3.95 × 10 ). Imputation of classic HLA genes followed by stepwise conditional analysis revealed that the combination of rs6903608 and HLA-DQB1*05:03 may explain most of the HLA association signal in acquired TTP. Our results refined the association of the HLA class II locus with acquired TTP, confirming its importance in the etiology of this autoimmune disease.
SummaryWe evaluated the additional benefit of Technetium 99 -sestamibi (99mTc-MIBI) scanning in comparison with standard X-ray techniques for multiple myeloma patients either at diagnosis or during follow-up. Between February 2001 and January 2005, 397 whole body scans were acquired. On 229 scans performed at diagnosis, 146 (64%) were positive and 81 cases have discordant X-ray results. The sensitivity of 99mTc-MIBI and X-ray were 77% and 45% respectively. As a result of 99mTc-MIBI, 40% of asymptomatic myeloma patients were up-staged. The positivity of 99mTc-MIBI correlated significantly with all of the most relevant clinical and biological parameters. Multivariate analysis selected only high reactive C protein (P ¼ 0AE0005), bone marrow infiltration (P ¼ 0AE02) and bone pain (P ¼ 0AE002) as factors affecting 99mTc-MIBI pattern. In 22 patients with solitary myeloma, 99mTc-MIBI was positive in 86% of cases and detected more disease sites than X-ray. Among 168 scans performed during follow-up, 99mTc-MIBI presented high specificity in patients showing a complete response (CR; 86%), and correlated with myeloma activity and with response to therapy. At multivariate analysis, a positive pattern correlated with bone marrow infiltration (P ¼ 0AE002) and disease status other than CR (P ¼ 0AE03). We conclude that 99mTc-MIBI scanning is an additional diagnostic tool with a high specificity for the staging and the follow-up of multiple myeloma patients.
Purpose Trauma is a leading cause of mortality, with major bleeding and trauma-induced coagulopathy (TIC) contributing to negative patient outcomes. Treatments for TIC include tranexamic acid (TXA), fresh frozen plasma (FFP), and coagulation factor concentrates (CFCs, e.g. prothrombin complex concentrates [PCCs] and fibrinogen concentrate [FCH]). Guidelines for TIC management vary across Europe and a clear definition of TIC is still lacking. Methods An advisory board involving European trauma experts was held on 02 February 2019, to discuss clinical experience in the management of trauma-related bleeding and recommendations from European guidelines, focusing on CFC use (mainly FCH). This review summarises the discussions, including TIC definitions, gaps in the guidelines that affect their implementation, and barriers to use of CFCs, with suggested solutions. Results A definition of TIC, which incorporates clinical (e.g. severe bleeding) and laboratory parameters (e.g. low fibrinogen) is suggested. TIC should be treated immediately with TXA and FCH/red blood cells; subsequently, if fibrinogen ≤ 1.5 g/L (or equivalent by viscoelastic testing), treatment with FCH, then PCC (if bleeding continues) is suggested. Fibrinogen concentrate, and not FFP, should be administered as first-line therapy for TIC. Several initiatives may improve TIC management, with improved medical education of major importance; generation of new and stronger data, simplified clinical practice guidance, and improved access to viscoelastic testing are also critical factors. Conclusions Management of TIC is challenging. A standard definition of TIC, together with initiatives to facilitate effective CFC administration, may contribute to improved patient care and outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.