BackgroundThe efficacy of the CTL component of a future HIV-1 vaccine will depend on the induction of responses with the most potent antiviral activity and broad HLA class I restriction. However, current HIV vaccine designs are largely based on viral sequence alignments only, not incorporating experimental data on T cell function and specificity.MethodsHere, 950 untreated HIV-1 clade B or -C infected individuals were tested for responses to sets of 410 overlapping peptides (OLP) spanning the entire HIV-1 proteome. For each OLP, a "protective ratio" (PR) was calculated as the ratio of median viral loads (VL) between OLP non-responders and responders.ResultsFor both clades, there was a negative relationship between the PR and the entropy of the OLP sequence. There was also a significant additive effect of multiple responses to beneficial OLP. Responses to beneficial OLP were of significantly higher functional avidity than responses to non-beneficial OLP. They also had superior in-vitro antiviral activities and, importantly, were at least as predictive of individuals' viral loads than their HLA class I genotypes.ConclusionsThe data thus identify immunogen sequence candidates for HIV and provide an approach for T cell immunogen design applicable to other viral infections.
Wilson disease (WD) is a copper metabolism disorder characterized by hepatic and/or neurological damage. More than 200 mutations in the ATP7B gene causing this autosomal recessive defect have been reported. In certain populations, a high prevalence of particular mutations allows rapid screening and diagnosis of the disease. We identified the ATP7B alterations in Spanish patients with WD. Mutations in the ATP7B gene were analysed in a total of 64 individuals from 40 different WD families by PCR amplification, single-strand conformation polymorphism (SSCP) analysis and sequencing. Twenty-one different ATP7B gene mutations were identified, eight of which were novel. 74% of the disease alleles were characterized among the 40 unrelated probands. We identified a prevalent mutation in our population (Met645Arg), present in 55% of this 40 patients. The frequency of the remaining ATP7B alterations was low. In addition, 17 different polymorphic variants were found. There is remarkable allele heterogeneity in WD in the Spanish population. Nevertheless, SSCP screening for the most frequent mutations in our population is feasible and leads to the detection of about 74% of the mutated chromosomes. Molecular diagnosis of WD is very useful in clinical practice to confirm or support clinical suspicion.
BackgroundGenetic analysis of BRCA1 and BRCA2 for the diagnosis of hereditary breast and ovarian cancer (HBOC) is commonly restricted to coding regions and exon-intron boundaries. Although germline pathogenic variants in these regions explain about ~20% of HBOC cases, there is still an important fraction that remains undiagnosed. We have screened BRCA1/2 deep intronic regions to identify potential spliceogenic variants that could explain part of the missing HBOC susceptibility.MethodsWe analysed BRCA1/2 deep intronic regions by targeted gene sequencing in 192 high-risk HBOC families testing negative for BRCA1/2 during conventional analysis. Rare variants (MAF <0.005) predicted to create/activate splice sites were selected for further characterisation in patient RNA. The splicing outcome was analysed by RT-PCR and Sanger sequencing, and allelic imbalance was also determined when heterozygous exonic loci were present.ResultsA novel transcript was detected in BRCA1 c.4185+4105C>T variant carrier. This variant promotes the inclusion of a pseudoexon in mature mRNA, generating an aberrant transcript predicted to encode for a non-functional protein. Quantitative and allele-specific assays determined haploinsufficiency in the variant carrier, supporting a pathogenic effect for this variant. Genotyping of 1030 HBOC cases and 327 controls did not identify additional carriers in Spanish population.ConclusionScreening of BRCA1/2 intronic regions has identified the first BRCA1 deep intronic variant associated with HBOC by pseudoexon activation. Although the frequency of deleterious variants in these regions appears to be low, our study highlights the importance of studying non-coding regions and performing comprehensive RNA assays to complement genetic diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.