The parasitic species of the Echinococcus granulosus sensu lato (sl) complex are the causative agents of cystic echinococcosis in humans. The lifecycle of E. granulosus sl is essentially domestic, and is based on the consumption by dogs of hydatid cysts in viscera of livestock species. The aim of this study was to survey E. granulosus sensu lato in livestock in France. A 1-year national survey of E. granulosus sl in livestock at the slaughterhouse was organized in 2012 in France, with systematic molecular confirmation. The prevalence of E. granulosus ss nationally was 0.002% in sheep, mainly focused in the Alpine area, and 0.001% in cattle, with the distribution of cases throughout the country. Echinococcus canadensis G6/7 was observed only in Corsica in pigs, with a prevalence of nearly 1% in the island. A national prevalence of 0.0002% was estimated for E. ortleppi in cattle, due to seven cases distributed in two foci. The results of this survey are of particular interest because of the zoonotic risk associated with the presence of these parasite species, for which systematic control at the slaughterhouse should enable their elimination.
The cestode Echinococcus multilocularis is the causative agent of a severe zoonotic disease: alveolar echinococcosis (AE). The parasite is distributed over a vast area in northern Eurasia and North America, but the impact of AE on human health is highly uneven between different regions. One hypothetical reason for this difference in virulence may be the genetic structure of E. multilocularis which—based on mitochondrial sequences and EmsB microsatellite profiles—forms four distinct clades. These clades correspond approximately to their continents of origin: Asia, Europe, and North America, with a fourth clade apparently restricted to Mongolia and neighboring regions, even though this clade has not yet been described by EmsB genotyping. However, there are various records of genetic variants from the “wrong” region, e.g., “European” haplotypes in Western Canada, which may be the result of introduction or natural migration of host animals. One such example, prompting this study, is the recent record of an “Asian” mitochondrial haplotype in worms from foxes in Poland. At the time, this could not be confirmed by EmsB microsatellite analysis, a method that has proven to possess greater discriminatory power with the E. multilocularis nuclear genome than sequencing of mitochondrial markers. Therefore, worms collected from foxes in Poland were examined both by EmsB analysis and sequencing of the full mitochondrial cox1 gene in order to allocate the samples to the European or Asian cluster. Based on EmsB analyses of 349 worms from 97 Polish red foxes, 92% of the worms clearly showed “European-type” EmsB profiles, but 27 worms (8%) from seven foxes showed profiles that clustered with samples of Asian origin. According to cox1 sequences, a total of 18 worms from 8 foxes belonged to the Asian cluster of haplotypes. The two methods did not fully agree: only 13 worms from three foxes belonged to Asian clusters by both EmsB and cox1, whereas 18 worms from nine foxes belonged to different clusters, according to each marker. Cross-fertilization between worms of Asian origin and those from the European Polish population may explain these conflicting results. The presence of clearly Asian elements in the Polish E. multilocularis population could be the result of introduction of E. multilocularis with host animals (e.g., domestic dogs), or the migration of foxes. In the absence of genetic data from eastern European countries, especially those bordering Poland, it cannot be concluded whether this Asian admixture is typical for a larger area toward central/eastern Europe, or the Polish parasite population is the western extreme of a gradient where both European and Asian elements mingle. Further studies are needed on this subject, preferably using both mitochondrial sequencing and EmsB microsatellite analysis.
Echinococcus multilocularis eggs are deposited on the ground with the faeces of the carnivore definitive hosts. A reliable assessment of the spatial distribution of E. multilocularis eggs in environments used by humans is crucial for the prevention of alveolar echinococcosis (AE). This study was conducted in 192 rural and 71 urban vegetable gardens in AE endemic areas of north-eastern France. Its objective was to explore the relationship between the spatial distribution of E. multilocularis estimated from the collection and molecular analysis of two types of samples: faeces and soil. A total of 1024 carnivore faeces and 463 soil samples were collected and analysed by real-time PCR. No fox droppings and no positive soil samples were collected from the urban gardens. Positive soil samples, positive carnivore faeces, or both, were found in 42%, 24% and 6% of the sampled rural gardens, respectively. No significant association was found between the detection of E. multilocularis in soil samples collected from 50 gardens during a single sampling session and the extent and frequency of deposits of fox and cat faeces collected during repeated sampling sessions conducted in the previous months. In 19/50 gardens, E. multilocularis was detected in the soil while no positive faeces had been collected in the previous 12 months. Conversely, in 8/50 gardens, no soil samples were positive although positive faeces had been collected in the previous months. Collecting and analysing faeces provide information on soil contamination at a given time, while analysing soil samples provides an overview of long-term contamination.
Cystic echinococcosis is a zoonotic disease with worldwide distribution caused by the larval stage of the Cestode parasite Echinococcus granulosus sensu lato. Due to the predominance or even the exclusive presence of E. granulosus sensu stricto (s.s.) among E. granulosus species in many areas, the genetic diversity needs to be further investigated at the species level to better understand the inter- and intra-focus epidemiological features. Short sequences of mitochondrial or nuclear genes generally lack or have limited discriminatory power, hindering the detection of polymorphisms to reflect geographically based peculiarities and/or any history of infection. A high discriminatory power can only be reached by sequencing complete or near complete mitogenomes or relatively long nuclear sequences, which is time-consuming and onerous. To overcome this issue, a systematic research for single-locus microsatellites was performed on the nuclear genome of E. granulosus s.s. in order to investigate its intra-species genetic diversity. Two microsatellites, EgSca6 and EgSca11, were selected and characterized. The test of a panel of 75 cystic echinococcosis samples revealed a very high discrimination index of 0.824 for EgSca6, 0.987 for EgSca11, and 0.994 when multiplexing both microsatellites. Testing cystic echinococcosis samples from both liver and lungs in five sheep revealed that these two microsatellites appear to be of particular interest for investigating genetic diversity at the intra-individual host level. As this method has many advantages compared to classical sequencing, the availability of other targets means that it is potentially possible to constitute a panel facilitating large-scale molecular epidemiology studies for E. granulosus s.l.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.