The genus Ocimum comprises of several medicinally important species which frequently fall prey to adulteration due to misidentification. A proficient method is hence required to solve the problems that exist in differentiating its various morphotypes. In plants, candidate DNA barcodes of the chloroplast and nuclear regions have proved to be a great success in the validation of several plant families. Hence, this study involves the use of the molecular-based DNA barcoding method to identify some of the most common and useful species of the genus Ocimum (Tulsi). Here, DNA amplification of three candidate barcodes of the chloroplast genome viz. matK, rbcL and psbA-trnH was performed, to access their ability to produce high sequence variability. The discrimination among species was performed using the Kimura 2-parameter and maximum composite likelihood methods. On analysing the sequence data, the psbA-trnH region proved to be the most suitable candidate barcode and gave an overall variation of 7.3% at the interspecies level. A clear differentiation was found at the species level, showing a maximum distance of 0.264 between dissimilar species. Also, phylogenetic analysis led to the successful identification of hybrids, while it failed to do so at the variety level. Hence, it can be inferred that DNA barcoding is ideal for species-level identification of the genus Ocimum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.