This study evaluates the efficiency of castor oil–based polyurethane foams for oil sorption S10 and S500, focusing on the influence of the pores’ size. Different foams were produced by varying the polyol: isocyanate ratio (1:0.3; 1:0.5; 1:1.0; 1:1.5; and 1:2.0). The physicochemical properties, morphology, density, and Hg porosity were determined. The sorption capacity was influenced by exposure time, oil viscosity, and concentration of the reagents, considering variations in the hydrophobicity, void content, and morphology. The results showed that the foam produced at an in the same mass proportion (PUC) has a higher sorption capacity in exposure time from 25 to 40 h due to higher void content and larger pore diameter size. It was observed that the lower viscosity of S10 diesel contributes to the higher sorption efficiency compared to S500 one. The Taguchi method corroborated the mentioned results, indicating a higher sorption trend by varying the reagent concentration and exposure times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.