Long noncoding RNAs (lncRNAs) regulate diverse processes, yet a potential role for lncRNAs in maintaining the undifferentiated state in somatic tissue progenitor cells remains uncharacterized. We used transcriptome sequencing and tiling arrays to compare lncRNA expression in epidermal progenitor populations versus differentiating cells. We identified ANCR (anti-differentiation ncRNA) as an 855-base-pair lncRNA down-regulated during differentiation. Depleting ANCR in progenitor-containing populations, without any other stimuli, led to rapid differentiation gene induction. In epidermis, ANCR loss abolished the normal exclusion of differentiation from the progenitor-containing compartment. The ANCR lncRNA is thus required to enforce the undifferentiated cell state within epidermis.
Chromosome conformation is an important feature of metazoan gene regulation1,2; however, enhancer–promoter contact remodeling during cellular differentiation remains poorly understood3. To address this, genome-wide promoter capture Hi-C (CHi-C)1,4 was performed during epidermal differentiation5. Two classes of enhancer–promoter contacts associated with differentiation-induced genes were identified. The first class (‘gained’) increased in contact strength during differentiation in concert with enhancer acquisition of the H3K27ac activation mark. The second class (‘stable’) were pre-established in undifferentiated cells, with enhancers constitutively marked by H3K27ac. The stable class was associated with the canonical conformation regulator cohesin, whereas the gained class was not, implying distinct mechanisms of contact formation and regulation. Analysis of stable enhancers identified a new, essential role for a constitutively expressed, lineage-restricted ETS-family transcription factor, EHF, in epidermal differentiation. Furthermore, neither class of contacts was observed in pluripotent cells, suggesting that lineage-specific chromatin structure is established in tissue progenitor cells and is further remodeled in terminal differentiation.
SUMMARY Progenitor differentiation requires remodeling of genomic expression; however, in many tissues, such as epidermis, the spectrum of remodeled genes and the transcription factors (TFs) that control them are not fully defined. We performed kinetic transcriptome analysis during regeneration of differentiated epidermis and identified gene sets enriched in progenitors (594 genes), in early (159 genes), and in late differentiation (387 genes). Module mapping of 1,046 TFs identified MAF and MAFB as necessary and sufficient for progenitor differentiation. MAF:MAFB regulated 393 genes altered in this setting. Integrative analysis identified ANCR and TINCR lncRNAs as essential upstream MAF:MAFB regulators. ChIP-seq analysis demonstrated MAF:MAFB binding to known epidermal differentiation TF genes whose expression they controlled, including GRHL3, ZNF750, KLF4, and PRDM1. Each of these TFs rescued expression of specific MAF:MAFB target gene subsets in the setting of MAF:MAFB loss, indicating they act downstream of MAF:MAFB. A lncRNA-TF network is thus essential for epidermal differentiation.
The RING domain of MDM2 that is essential for its E3 ligase activity mediates binding to itself and its structural homologue MDMX. Whereas it has been reported that RING domain interactions are critical, it is not well understood how they affect the E3 ligase activity of MDM2. We report that the E3 ligase activity requires the RING domain-dependent complex formation. In vivo, MDM2 and MDMX hetero-RING complexes are the predominant form versus the MDM2 homo-RING complex. Importantly, the MDM2/MDMX hetero-RING complexes exhibit a greater E3 ligase activity than the MDM2 homo-RING complexes. Disruption of the binding between MDM2 and MDMX resulted in a marked increase in both abundance and activity of p53, emphasizing the functional importance of this heterocomplex in p53 control. [Cancer Res 2007;67(13):6026-30]
Summary Somatic progenitors suppress differentiation to maintain tissue self-renewal. The mammalian SWI/SNF chromatin-remodeling complex regulates nucleosome packaging to control differentiation in embryonic and adult stem cells. Catalytic Brg1 and Brm subunits are required for these impacts, however, roles for SWI/SNF regulatory subunits are not fully understood. Here we show that ACTL6a/BAF53A modulates the SWI/SNF complex to suppress differentiation in epidermis. Conditional loss of ACTL6a resulted in terminal differentiation, cell cycle exit and hypoplasia while ectopic expression of ACTL6a promoted the progenitor state. A significant portion of genes regulated by ACTL6a were found to also be targets of KLF4, a known activator of epidermal differentiation. Mechanistically, we show that ACTL6a prevents SWI/SNF complex binding to promoters of KLF4 and other differentiation genes, and that SWI/SNF catalytic subunits are required for full induction of KLF4 targets. Thus, ACTL6a controls the epidermal progenitor state by sequestering SWI/SNF to prevent activation of differentiation programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.