Chromosome 8q24 is a susceptibility locus for multiple cancers, including prostate cancer. Here we combine genetic data across the 8q24 susceptibility region from 71,535 prostate cancer cases and 52,935 controls of European ancestry to define the overall contribution of germline variation at 8q24 to prostate cancer risk. We identify 12 independent risk signals for prostate cancer (p < 4.28 × 10−15), including three risk variants that have yet to be reported. From a polygenic risk score (PRS) model, derived to assess the cumulative effect of risk variants at 8q24, men in the top 1% of the PRS have a 4-fold (95%CI = 3.62–4.40) greater risk compared to the population average. These 12 variants account for ~25% of what can be currently explained of the familial risk of prostate cancer by known genetic risk factors. These findings highlight the overwhelming contribution of germline variation at 8q24 on prostate cancer risk which has implications for population risk stratification.
Denaturing gradient gel electrophoresis (DGGE) is believed to be the most powerful pre-screening method for mutation detection currently available, being used mostly on an exon-by-exon basis. Broadrange DGGE for the analysis of multiple fragments or an entire gene is rarely applied. We and others have already shown that one or two DGGE conditions are usually sufficient to analyse an entire gene. Conditions, however, have never been profoundly tested and compared with alternative methods suggested in the literature. Trying to do so in this study, we found significant differences between the various gel systems. The optimal conditions we found for broadrange DGGE include 9% polyacrylamide for the gel, a denaturing gradient with a difference of 30-50% between the lowest and the highest concentration of denaturant, and electrophoresis in 0.5× × × × TAE buffer at a voltage >100 V and <200 V.
Background: Germline testing for prostate cancer is on the increase, with clinical implications for risk assessment, treatment, and management. Regardless of family history, NCCN recommends germline testing for patients with metastatic, regional, very-high-risk localized, and high-risk localized prostate cancer. Although African ancestry is a significant risk factor for aggressive prostate cancer, due to a lack of available data no testing criteria have been established for ethnic minorities. Patients and Methods: Through deep sequencing, we interrogated the 20 most common germline testing panel genes in 113 Black South African males presenting with largely advanced prostate cancer. Bioinformatic tools were then used to identify the pathogenicity of the variants. Results: After we identified 39 predicted deleterious variants (16 genes), further computational annotation classified 17 variants as potentially oncogenic (12 genes; 17.7% of patients). Rare pathogenic variants included CHEK2 Arg95Ter, BRCA2 Trp31Arg, ATM Arg3047Ter (2 patients), and TP53 Arg282Trp. Notable oncogenic variants of unknown pathogenicity included novel BRCA2 Leu3038Ile in a patient with early-onset disease, whereas patients with FANCA Arg504Cys and RAD51C Arg260Gln reported a family history of prostate cancer. Overall, rare pathogenic and early-onset or familial-associated oncogenic variants were identified in 6.9% (5/72) and 9.2% (8/87) of patients presenting with a Gleason score ≥8 or ≥4 + 3 prostate cancer, respectively. Conclusions: In this first-of-its-kind study of southern African males, we provide support of African inclusion for advanced, early-onset, and familial prostate cancer genetic testing, indicating clinical value for 30% of current gene panels. Recognizing current panel limitations highlights an urgent need to establish testing guidelines for men of African ancestry. We provide a rationale for considering lowering the pathologic diagnostic inclusion criteria and call for further genome-wide interrogation to ensure the best possible African-relevant prostate cancer gene panel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.