The objective of this study was to describe the proteolysis and lipolysis profiles in goat cheese made in the Canary Islands (Spain) using raw milk with 3 different fat contents (0.5, 1.5, and 5%) and ripened for 1, 7, 14, and 28 d. β-Casein was the most abundant protein in all cheeses and at all ripening times. Quantitative analysis showed a general decrease in caseins as ripening progressed, and degradation rates were higher for α(S1)-casein than for β-casein and α(S2)-casein. Furthermore, the degradation rate during the experimental time decreased with lower fat contents. The α(S2)-casein and α(S1)-casein levels that remained in full-fat and reduced-fat cheeses were less than those in low-fat cheese. In contrast, β-casein also showed degradation along with ripening, but differences in degradation among the 3 cheese types were not significant at 28 d. The degradation products increased with the ripening time in all cheeses, but they were higher in full-fat cheese than in reduced-fat and low-fat cheeses. The free fatty acid concentration per 100g of cheese was higher in full-fat cheese than in reduced- and low-fat cheese; however, when the results were expressed as milligrams of free fatty acids per gram of fat in cheese, then lipolysis occurred more rapidly in low-fat cheese than in reduced- and full-fat cheeses. These results may explain the atypical texture and off-flavors found in low-fat goat cheeses, likely the main causes of non-acceptance.
Water deficit in semi-arid regions limits the future of the livestock sector. Also, its high price represents a percentage of the total cost of forage production. Non-conventional water resources applied by subsurface drip irrigation (SDI), in which the safe use lies in the management and not on the level of water treatment, would enhance the ruminant production sustainability. To obtain the optimal benefit, the transformation of water per kilogram of dry matter produced must have a high grade of effectiveness. Under this premise, a maralfalfa crop (Penissetum sp, hybridum) has been established with an SDI system and reclaimed water. Forage yield is analyzed with respect to a 40% irrigation reduction. This study shows that, with the use of these good irrigation management practices, it is possible to harvest an annual production of 90 to 72 t• ha −1 in the warmer regions of the Canary Islands. This implies water consumption between 13,200 and 8100 m 3 • ha −1. A water consumption of 21,000 m 3 • ha −1 per year for the same production, at a ratio of 230 L• t −1 , can be estimated for the rest of the Canary Islands coastal regions. The use of the water management described in this paper can be profitable in the Canary Islands for fodder production.
Cape Verde, which has agricultural land that is mainly rainfed, will be severely affected by climate change due to increased drought conditions. Scarce water availability makes this country highly dependent on imports for its food supply, resulting in more than 80% food importation. Improving water use efficiency, implementing precision irrigation could help achieve sustainable use of water resources. Cereal production reusing treated water could contribute to strengthening resilience and adaptation to climate change in Cape Verde. Our pilot project demonstrates that the safe and profitable reuse of water produced by Cape Verde’s water treatment plants is possible by avoiding water and plant contact using Subsurface Drip Irrigation (SDI), obtaining food yields between 10,000 and 7000 kg of cob/ha, with a water consumption of about 300 L/kg Dry-Matter and a Water-Use-Efficiency of about 3 g/L. These studies also showed that it is necessary to provide training to farmers and to conduct further studies to help solve present challenges. This project identif installation failures as water shortages can compromise farmers’ profitability. To guarantee the sustainability of water reuse, it is also necessary to consider economic and social factors, including that all water that is not reused is poured, increasing environmental and sanitary risk and decreasing the possibility of recovering water treatment costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.