Significance
Fermentation of dietary fiber in the lower gut of humans is a critical process for the function and integrity of both the bacterial community and host cells. Here we demonstrate that two human gut commensal
Bacteroides
are equipped with unique enzymes that allow degradation of xylan, a common hemicellulose in human diets. Furthermore, we identify a novel carbohydrate-binding module (CBM) family that disrupts the catalytic domain of a glycoside hydrolase 10 (GH10) endoxylanase and facilitates the hydrolytic activity of the enzyme. The conservation of the unique modular architecture of the GH10 endoxylanase in the genomes of diverse Bacteroidetes suggests a critical role in fiber digestion in this phylum.
During growth on crystalline cellulose, the thermophilic bacterium Caldicellulosiruptor bescii secretes several cellulose-degrading enzymes. Among these enzymes is CelA (CbCel9A/Cel48A), which is reported as the most highly secreted cellulolytic enzyme in this bacterium. CbCel9A/Cel48A is a large multi-modular polypeptide, composed of an N-terminal catalytic glycoside hydrolase family 9 (GH9) module and a C-terminal GH48 catalytic module that are separated by a family 3c carbohydrate-binding module (CBM3c) and two identical CBM3bs. The wild-type CbCel9A/Cel48A and its truncational mutants were expressed in Bacillus megaterium and Escherichia coli, respectively. The wild-type polypeptide released twice the amount of glucose equivalents from Avicel than its truncational mutant that lacks the GH48 catalytic module. The truncational mutant harboring the GH9 module and the CBM3c was more thermostable than the wild-type protein, likely due to its compact structure. The main hydrolytic activity was present in the GH9 catalytic module, while the truncational mutant containing the GH48 module and the three CBMs was ineffective in degradation of either crystalline or amorphous cellulose. Interestingly, the GH9 and/or GH48 catalytic modules containing the CBM3bs form low-density particles during hydrolysis of crystalline cellulose. Moreover, TM3 (GH9/CBM3c) and TM2 (GH48 with three CBM3 modules) synergistically hydrolyze crystalline cellulose. Deletion of the CBM3bs or mutations that compromised their binding activity suggested that these CBMs are important during hydrolysis of crystalline cellulose. In agreement with this observation, seven of nine genes in a C. bescii gene cluster predicted to encode cellulose-degrading enzymes harbor CBM3bs. Based on our results, we hypothesize that C. bescii uses the GH48 module and the CBM3bs in CbCel9A/Cel48A to destabilize certain regions of crystalline cellulose for attack by the highly active GH9 module and other endoglucanases produced by this hyperthermophilic bacterium.
Background:The thermophilic bacterium Caldanaerobius polysaccharolyticus can utilize mannan polysaccharides found in plant hemicellulose. Results: The mannan degradation gene cluster contains a solute-binding protein with an unexpected tolerance for linear and branched manno-oligosaccharides. Conclusion: Structural studies reveal a binding site optimized for linear and branched mannotriose. Significance: The self-contained mannan-utilizing cluster can be utilized for engineering efforts for the conversion of mannancontaining hemicellulose into cellulosic biofuels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.