The two-component system SaeRS consisting of the histidin kinase SaeS and the response regulator SaeR is known to act on virulence gene expression in Staphylococcus aureus. In order to get a more comprehensive picture on SaeR-regulated genes, we studied the contribution of the two-component system on global gene expression by using both the proteomic and transcriptomic approach. Altogether, a loss of SaeRS resulted in a decreased amount of at least 17 extracellular proteins and two cell surface-associated proteins, among them several important virulence factors such as HlgA, HlgB, HlgC, LukF, and LukM. SaeRS activates the expression of these genes at the transcriptional level. The amount of the five proteins Aur, SspA, SsaA, Plc, and GlpQ was negatively influenced by SaeRS. However, the transcription of the corresponding genes was not affected by the two-component system. SaeRS had also no measurable influence on the transcription of the regulatory genes agr, sarA, arlRS, and sigB that contribute to the regulation of SaeRS-dependent virulence factors identified in this investigation. Our results clearly show that SaeRS is strongly involved in the tight temporal control of virulence factor expression in S. aureus. Its precise role within the regulatory network remains to be determined.Staphylococcus aureus is a gram-positive bacterium that colonizes the anterior nares of at least one-third of the human population but also causes a variety of infections ranging from superficial lesions, such as wound infections and abscesses, to severe systemic infections such as bacteremia, endocarditis, pneumonia, and osteomyelitis. The pathogenicity of this organism largely depends on the successful adaptation to the human host and the environmentally coordinated expression of virulence factors. The expression of virulence factors in S. aureus is regulated during the growth cycle by a network of interacting regulators (for a review, see reference 41). The best-characterized virulence-associated regulons thus far are the agr regulon (accessory gene regulator), the SarA regulon (staphylococcal accessory regulator), the B regulon (alternative sigma factor), the Rot regulon (regulator of toxins), and the ArlRS regulon (autolysis-regulated locus) (7,15,20,37,47,60,61).The sae locus was first described by Giraudo et al. (27) following the characterization of a Tn551 insertional mutant of S. aureus RC161. sae is a regulatory locus that consists of four open reading frames, two of them encode the response regulator and the sensor kinase, respectively (23). Two additional open reading frames coding for hypothetical proteins are probably important for the functionality of the sae operon (42, 56).
Staphylococcus aureus is a frequent commensal but also a dangerous pathogen, causing many forms of infection ranging from mild to life‐threatening conditions. Among its virulence factors are lipoproteins, which are anchored in the bacterial cell membrane. Lipoproteins perform various functions in colonization, immune evasion, and immunomodulation. These proteins are potent activators of innate immune receptors termed Toll‐like receptors 2 and 6. This study addressed the specific B‐cell and T‐cell responses directed to lipoproteins in human S. aureus carriers and non‐carriers. 2D immune proteomics and ELISA approaches revealed that titers of antibodies (IgG) binding to S. aureus lipoproteins were very low. Proliferation assays and cytokine profiling data showed only subtle responses of T cells; some lipoproteins did not elicit proliferation. Hence, the robust activation of the innate immune system by S. aureus lipoproteins does not translate into a strong adaptive immune response. Reasons for this may include inaccessibility of lipoproteins for B cells as well as ineffective processing and presentation of the antigens to T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.