Next‐generation sequencing (NGS) has emerged as an affordable and reproducible means to query tumors for somatic genetic anomalies. To help interpret somatic NGS data, many institutions have created a molecular tumor board to analyze the results of NGS and make recommendations. This article evaluates the utility of cognitive computing systems to analyze data for clinical decision‐making.
Objective:To analyze a glioblastoma tumor specimen with 3 different platforms and compare potentially actionable calls from each.Methods:Tumor DNA was analyzed by a commercial targeted panel. In addition, tumor-normal DNA was analyzed by whole-genome sequencing (WGS) and tumor RNA was analyzed by RNA sequencing (RNA-seq). The WGS and RNA-seq data were analyzed by a team of bioinformaticians and cancer oncologists, and separately by IBM Watson Genomic Analytics (WGA), an automated system for prioritizing somatic variants and identifying drugs.Results:More variants were identified by WGS/RNA analysis than by targeted panels. WGA completed a comparable analysis in a fraction of the time required by the human analysts.Conclusions:The development of an effective human-machine interface in the analysis of deep cancer genomic datasets may provide potentially clinically actionable calls for individual patients in a more timely and efficient manner than currently possible.ClinicalTrials.gov identifier:NCT02725684.
Background: Oncologists increasingly rely on clinical genome sequencing to pursue effective, molecularly targeted therapies. This study assesses the validity and utility of the artificial intelligence Watson for Genomics (WfG) for analyzing clinical sequencing results.Methods: This study identified patients with solid tumors who participated in in-house genome sequencing projects at a single cancer specialty hospital between April 2013 and October 2016. Targeted genome sequencing results of these patients' tumors, previously analyzed by multidisciplinary specialists at the hospital, were reanalyzed by WfG. This study measures the concordance between the two evaluations.Results: In 198 patients, in-house genome sequencing detected 785 gene mutations, 40 amplifications, and 22 fusions after eliminating single nucleotide polymorphisms. Breast cancer (n = 40) was the most frequent diagnosis in this analysis, followed by gastric cancer (n = 31), and lung cancer (n = 30). Frequently detected single nucleotide variants were found in TP53 (n = 107), BRCA2 (n = 24), and NOTCH2 (n = 23). MYC (n = 10) was the most frequently detected gene amplification, followed by ERBB2 (n = 9) and CCND1 (n = 6). Concordant pathogenic classifications (i.e., pathogenic, benign, or variant of unknown significance) between in-house specialists and WfG included 705 mutations (89.8%; 95% CI, 87.5%−91.8%), 39 amplifications (97.5%; 95% CI, 86.8–99.9%), and 17 fusions (77.3%; 95% CI, 54.6–92.2%). After about 12 months, reanalysis using a more recent version of WfG demonstrated a better concordance rate of 94.5% (95% CI, 92.7–96.0%) for gene mutations. Across the 249 gene alterations determined to be pathogenic by both methods, including mutations, amplifications, and fusions, WfG covered 84.6% (88 of 104) of all targeted therapies that experts proposed and offered an additional 225 therapeutic options.Conclusions: WfG was able to scour large volumes of data from scientific studies and databases to analyze in-house clinical genome sequencing results and demonstrated the potential for application to clinical practice; however, we must train WfG in clinical trial settings.
The tumor genome of a patient with advanced pancreatic cancer was sequenced to identify potential therapeutic targetable mutations after standard of care failed to produce any significant overall response. Matched tumor-normal whole-genome sequencing revealed somatic mutations in BRAF, TP53, CDKN2A, and a focal deletion of SMAD4. The BRAF variant was an in-frame deletion mutation (ΔN486_P490), which had been previously demonstrated to be a kinase-activating alteration in the BRAF kinase domain. Working with the Novartis patient assistance program allowed us to treat the patient with the BRAF inhibitor, dabrafenib. The patient's overall clinical condition improved dramatically with dabrafenib. Levels of serum tumor marker dropped immediately after treatment, and a subsequent CT scan revealed a significant decrease in the size of both primary and metastatic lesions. The dabrafenib-induced remission lasted for 6 mo. Preclinical studies published concurrently with the patient's treatment showed that the BRAF in-frame mutation (ΔNVTAP) induces oncogenic activation by a mechanism distinct from that induced by V600E, and that this difference dictates the responsiveness to different BRAF inhibitors. This study describes a dramatic instance of how high-level genomic technology and analysis was necessary and sufficient to identify a clinically logical treatment option that was then utilized and shown to be of clinical value for this individual.
Objectives Describe an augmented intelligence approach to facilitate the update of evidence for associations in knowledge graphs. Methods New publications are filtered through multiple machine learning study classifiers, and filtered publications are combined with articles already included as evidence in the knowledge graph. The corpus is then subjected to named entity recognition, semantic dictionary mapping, term vector space modeling, pairwise similarity, and focal entity match to identify highly related publications. Subject matter experts review recommended articles to assess inclusion in the knowledge graph; discrepancies are resolved by consensus. Results Study classifiers achieved F-scores from 0.88 to 0.94, and similarity thresholds for each study type were determined by experimentation. Our approach reduces human literature review load by 99%, and over the past 12 months, 41% of recommendations were accepted to update the knowledge graph. Conclusion Integrated search and recommendation exploiting current evidence in a knowledge graph is useful for reducing human cognition load.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.