This study demonstrates the excellent in vitro antifungal activity profile of imidazolium ionic liquids (ILs) against species of opportunistic human mycoses. Several ILs were identified as more effective and less harmful than
Clioquinol is an 8-hydroxyquinoline derivative that was widely used from the 1950s to 1970s as an oral antiparasitic agent. In 1970, the oral forms were withdrawn from the market due to reports of toxicity, but topical formulations for antifungal treatment remained available. Thus, the purpose of this study was to evaluate the toxicity, anti-Candida and antidermatophyte activity and to determine pharmacodynamic characteristics of clioquinol and other 8-hydroxyquinoline derivatives (8-hydroxy-5-quinolinesulfonic acid and 8-hydroxy-7-iodo-5-quinolinesulfonic acid). Antifungal activity was tested by broth microdilution and the fungicidal or fungistatic effect was checked by a time-kill assay. Permeation and histopathological evaluation were performed in Franz diffusion cells with ear skin of pigs and examined under light microscopy. An HET-CAM test was used to determine the potential irritancy. The three compounds were active against all isolates showing anti-Candida and antidermatophyte activity, with MIC ranges of 0.031-2 μg/ml, 1-512 μg/ml, and 2-1024 μg/ml for clioquinol, 8-hydroxy-5-quinolinesulfonic acid, and 8-hydroxy-7-iodo-5-quinolinesulfonic acid, respectively. All compounds showed fungistatic effect for Candida, 8-hydroxy-5-quinolinesulfonic acid, and 8-hydroxy-7-iodo-5-quinolinesulfonic acid showed a fungicidal effect for M. canis and T. mentagrophytes, and clioquinol showed a fungicidal effect only for T. mentagrophytes. Furthermore, they presented a fungicidal effect depending on the time and concentration. The absence of lesions was observed in histopathological evaluation and no compound was irritating. Moreover, clioquinol and 8-hydroxy-5-quinolinesulfonic acid accumulated in the epithelial tissue, and 8-hydroxy-7-iodo-5-quinolinesulfonic acid had a high degree of permeation. In conclusion, 8-hydroxyquinoline derivatives showed antifungal activity and 8-hydroxy-5-quinolinesulfonic acid demonstrated the potential for antifungal drug design.
The imidazolium salt 1-n-hexadecyl-3-methylimidazolium chloride (C16 MImCl) strongly prevents, in concentrations as low as 0·028 μg ml(-1) , the biofilm formation of multidrug-resistant Candida tropicalis isolates, either in solution or applied on the surface of commercial catheters. This presents an effective antimicotic candidate and alternative for invasive clinical procedure toolset asepsis.
The expressive antifungal activity of IMS, combined with the in vitro nontoxicity, makes them promising compounds for the safe and effective treatment of dermatophytoses, mainly when this skin mycosis is unresponsive to conventional drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.