Aging is associated with a decline in physical functions, cognition and brain structure. Considering that human life is based on an inseparable physical-cognitive interplay, combined physical-cognitive training through exergames is a promising approach to counteract age-related impairments. The aim of this study was to assess the effects of an in-home multicomponent exergame training on [i] physical and cognitive functions and [ii] brain volume of older adults compared to a usual care control group. Thirty-seven healthy and independently living older adults aged 65 years and older were randomly assigned to an intervention (exergame training) or a control (usual care) group. Over 16 weeks, the participants of the intervention group absolved three home-based exergame sessions per week (à 30-40 min) including Tai Chi-inspired exercises, dancing and step-based cognitive games. The control participants continued with their normal daily living. Pre-and post-measurements included assessments of physical (gait parameters, functional muscle strength, balance, aerobic endurance) and cognitive (processing speed, short-term attention span, working memory, inhibition, mental flexibility) functions. T1-weighted magnetic resonance imaging was conducted to assess brain volume. Thirty-one participants (mean age = 73.9 ± 6.4 years, range = 65-90 years, 16 female) completed the study. Inhibition and working memory significantly improved postintervention in favor of the intervention group [inhibition: F (1) = 2.537, p = 0.046, n 2 p = 0.11, working memory: F (1) = 5.872, p = 0.015, n 2 p = 0.02]. Two measures of short-term attentional span showed improvements after training in favor of the control group [F (1) = 4.309, p = 0.038, n 2 p = 0.03, F (1) = 8.504, p = 0.004, n 2 p = 0.04]. No significant training effects were evident for physical functions or brain volume. Both groups exhibited a significant decrease in gray matter volume of frontal areas and the hippocampus over time. The findings indicate a positive influence of exergame training Adcock et al. Effects of Exergame Training in Older Adults on executive functioning. No improvements in physical functions or brain volume were evident in this study. Better adapted individualized training challenge and a longer training period are suggested. Further studies are needed that assess training-related structural brain plasticity and its effect on performance, daily life functioning and healthy aging.
As sensor-rich mobile devices became a commodity, more opportunities appeared for the creation of location-aware services. While GPS is a well established solution for outdoor localization, there is still no standard solution for localization indoors. This paper presents a novel accurate indoor positioning mechanism that is meant to run in common smartphones to be a readily and widely available solution. The system is based on multiple gait-model based filtering techniques for accurate movement quantification in combination with an advanced fused positioning mechanism that leverages sequences of opportunistic observations towards an accurate localization process. Magnetic field fluctuations, Wi-Fi readings and movement data are incrementally matched with a feature spot map containing multi-dimensional spatially-related features that characterize the building. A novel and convenient way of mapping the architectural and environmental properties of buildings is also introduced, which avoids the burden normally associated with the process. The system has been evaluated by multiple users in open and crowded spaces where overall median localization errors between 1.11 m and 1.68 m were obtained. While the reported errors are already satisfactory in the context of indoor localization, improvements may be readily achieved through the inclusion of additional reference features. High accuracy performance coupled with an opportunistic and infrastructure-free approach creates a very desirable solution for the indoor localization market doge
Stroke is a disabling disease that requires extensive work of rehabilitation to improve the quality of life of patients. In order to increase the compliance and motivation of the patients, stroke rehabilitation exercises have been developed in a game-like structure using a smartphone. These games were designed to promote and evaluate different movements of the upper limbs and their level of difficulty is adaptable to each patient's impairment level. The feasibility of the use of smartphone built-in inertial sensors to monitor the execution of stroke rehabilitation exercises has been assessed. The accuracy of the angles measured decreased along time and for higher angles, however the differences between real and measured angles are within acceptable limits. The usability tests in a post-stroke patient case demonstrate the applicability and motivational potential of the developed games. Gamification of stroke rehabilitation exercises using a smartphone is feasible and may be valuable for stroke rehabilitation.
Inertial sensors can potentially assist clinical decision making in gait-related disorders. Methods for objective spatio-temporal gait analysis usually assume the careful alignment of the sensors on the body, so that sensor data can be evaluated using the body coordinate system. Some studies infer sensor orientation by exploring the cyclic characteristics of walking. In addition to being unrealistic to assume that the sensor can be aligned perfectly with the body, the robustness of gait analysis with respect to differences in sensor orientation has not yet been investigated—potentially hindering use in clinical settings. To address this gap in the literature, we introduce an orientation-invariant gait analysis approach and propose a method to quantitatively assess robustness to changes in sensor orientation. We validate our results in a group of young adults, using an optical motion capture system as reference. Overall, good agreement between systems is achieved considering an extensive set of gait metrics. Gait speed is evaluated with a relative error of −3.1±9.2 cm/s, but precision improves when turning strides are excluded from the analysis, resulting in a relative error of −3.4±6.9 cm/s. We demonstrate the invariance of our approach by simulating rotations of the sensor on the foot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.