Several genes and pathways associated with oral squamous cell carcinoma (OSCC) are significant in terms of early detection and prognosis. The objective of this literature review is to evaluate the current research on molecular pathways and genes involved in oral cancer. Articles on the genes involved in oral cancer pathways were evaluated to identify potential biomarkers that can predict survival. In total, 36 articles were retrieved from internet databases, including EBSCO Host, Google Scholar, PubMed, and Science Direct, using the keywords “biomarker of oral cancer,” “pathways of oral cancer,” “genes involved in oral cancer,” and “oral cancer pathways.” A total of 36 studies related to OSCC were chosen. Most of the studies used cell lines, while others used archival tissues, few studies followed up the cases. Three major interlinked pathways found were the nuclear factor kappa B (NF-kB), PI3K-AKT, and Wnt pathways. The commonly mutated genes were cyclin D1 (CCND1), Rb, p53, FLJ10540, and TC21. The NF-kB, PI3K-AKT, and Wnt pathways are most frequently involved in the molecular pathogenesis of oral cancer. However, the CCND1, Rb, p53, FLJ10540, and TC21 genes were found to be more accurate in determining patients’ overall survival. Polymerase chain reaction, immunohistochemistry, and immunoblotting were the commonly used detection methods.
Background:Ameloblastic carcinoma (ACA) is a malignant neoplasm with overlapping histopathological features of benign aggressive solid multicystic ameloblastoma (SMA). This often leads to misdiagnosis with direct implication on the management protocol. The need of the hour is to adopt reliable tissue biomarkers to differentiate these lesions accurately that will help to implement an appropriate treatment modality. Few studies to differentiate ACA and SMA in literature with a limitation of a single marker and lack of availability of cases have prompted us to undertake this study. Thereby, this study is aimed at resolving the diagnostic dilemma in differentiating ACA and aggressive SMA using SOX-2, OCT-4 and CD44.Materials and Methods:Tissue samples involved 40 archival cases of histopathologically confirmed cases of ACA (n = 20) and SMA (n = 20). The sections were subjected to immunohistochemical staining using antibodies to SOX-2, OCT-4 and CD44. Nuclear staining for SOX-2 and OCT-4 and membranous reactivity for CD44 was considered positive.Results:The expression of SOX-2 and OCT-4 in ACA was statistically significant when compared to SMA (P < 0.001). CD44 showed an insignificant statistical value of <0.077 in differentiating ACA and SMA. SOX-2 and OCT-4 expression in ACA showed a significant correlation coefficient of 0.616 at P < 0.004.Conclusions:SOX-2 and OCT-4 could serve as independent novel markers in resolving the diagnostic dilemma between ACA and aggressive SMA.
Preclinical studies and clinical trials have emphasized the decisive role of lipid metabolism in tumor proliferation and metastasis. This systematic review aimed to explore the existing literature to evaluate the role and significance of the genes and pathways most commonly involved in the regulation of lipid metabolism in cancer. The literature search was performed as per Preferred Reporting Items for Systematic Reviews and Meta-analyses. Approximately 2396 research articles were initially selected, of which 215 were identified as potentially relevant for abstract review. Upon further scrutiny, 62 of the 215 studies were reviews, seminars, or presentations, and 44 were original study articles and were thus included in the systematic review. The predominant gene involved in lipid metabolism in cancer was stearoyl-coenzyme A desaturase 1 (SCD1), followed by fatty acid synthase (FASN). The pathway most commonly involved in lipid metabolism in cancer was the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway, followed by the mitogen activated protein kinase (MAPK) pathway. SCD1 and FASN play significant roles in the initiation and progression of cancer and represent attractive targets for potentially effective anti-cancer treatment strategies. The regulation of cancer metabolism by the Akt kinases will be an interesting topic of future study.
Background: Nature is vibrant and has an abundance of colors. The use of natural hues in histopathology could offer an economical and feasible alternative to the routinely used stains in special circumstances. Aim: To evaluate the efficacy of the extract of Hibiscus as a counterstain to hematoxylin. Methodology: Hibiscus calyces were sun dried and powdered. Alcoholic and water extracts were obtained by refluxing the powder with 95% ethanol and distilled water, respectively, for 3 h, and then cooled and filtered. Sections from 12 formalin-fixed paraffin-embedded tissue blocks, including both oral mucosal and skin tissues, were used. Nuclear staining was done with hematoxylin, following which the sections were stained with both alcoholic and aqueous Hibiscus extract for 10 min at room temperature using a dropper. All the slides were coded and were reviewed by three blinded oral pathologists for staining efficiency and intensity. NPar test, Kruskal-Wallis test, and Kappa statistics were done to assess the staining efficiency, intensity, and interobserver reliability for the selected parameters. Results: Statistically significant difference was not seen between Hibiscus extract and the controls, except in relation to staining of the basement membrane. Conclusion: Easily available and economical Hibiscus extract is an attractive alternative to eosin. Further studies involving the addition of mordants to the extract and its use as a special stain has to be explored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.