Mitigating the risk of acquiring coronaviruses including SARS-CoV-2 requires awareness of the survival of virus on high-touch environmental surfaces (HITES) and skin, and frequent use of targeted microbicides with demonstrated efficacy. The data on stability of infectious SARS-CoV-2 on surfaces and in suspension have been put into perspective, as these inform the need for hygiene. We evaluated the efficacies of formulated microbicidal actives against alpha- and beta-coronaviruses, including SARS-CoV-2. The coronaviruses SARS-CoV, SARS-CoV-2, human coronavirus 229E, murine hepatitis virus-1, or MERS-CoV were deposited on prototypic HITES or spiked into liquid matrices along with organic soil loads. Alcohol-, quaternary ammonium compound-, hydrochloric acid-, organic acid-, p-chloro-m-xylenol-, and sodium hypochlorite-based microbicidal formulations were evaluated per ASTM International and EN standard methodologies. All evaluated formulated microbicides inactivated SARS-CoV-2 and other coronaviruses in suspension or on prototypic HITES. Virucidal efficacies (≥ 3 to ≥ 6 log10 reduction) were displayed within 30 s to 5 min. The virucidal efficacy of a variety of commercially available formulated microbicides against SARS-CoV-2 and other coronaviruses was confirmed. These microbicides should be useful for targeted surface and hand hygiene and disinfection of liquids, as part of infection prevention and control for SARS-CoV-2 and emerging mutational variants, and other emerging enveloped viruses.
through MP. It could indeed explain an important part in the transmission of the infection to patients who claim adopting recommended safety measures.Hence, several measures should be endorsed to tackle the MPrelated SARS-CoV-2 transmission risk. Disinfection with bactericidal wipes adapted to MP could not be completely effective, and specific sanitization protocols should be developed especially for health care workers. 3 Until then, it is crucial during the deconfinment phase to educate the population to limit the use of MP as much as possible, especially in public places and health care institutions. To our opinion, this procedure should be included in the recommended safety measures that are widely broadcasted through the media and science information thread.
Although clothes washing machines remove dirt, microorganisms are not reliably removed by modern cold-water machine-washing practices. Microbial bioburden on clothing originates from the wearer’s skin, the environment (indoor and outdoor), and the washing machine itself. While most clothing microbes are commensals, microbes causing odors and opportunistic pathogens may also be present. Understanding the extent of microbial transfer from washing machines to clothes may inform strategies for odor control and for mitigating the transmission of microbes through the laundering process. This study was designed to quantify and identify bacteria/fungi transferred from laundromat machines to sentinel cotton washcloths under standard cold-water conditions. Bacterial 16S rRNA and fungal ITS sequencing enabled identification of microorganisms in the washcloths following laundering. Total plate-based enumeration of viable microorganisms also was performed, using growth media appropriate for bacteria and fungi. Opportunistic human bacterial pathogens, including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp., were recovered. The fungal bioburden was ~two-fold lower than the bacterial bioburden. Most sequences recovered were assigned to non-pathogenic fungi, such as those from genera Malassezia and Ascomycota. These results suggest that public washing machines represent a source of non-pathogenic and pathogenic microbial contamination of laundered garments.
When worn, clothing acquires a microbiome of bacteria and fungi derived from the wearer’s skin and from the environment. The types of bacteria and fungi that may be recovered from clothing in healthcare settings have been well characterized, but less is known regarding the microbiome of clothing worn in non-healthcare settings and the possible roles that such clothing may play in microbial exchange. Culture-based methods and culture-independent genomic sequencing were used to enumerate and identify bacteria and fungi recovered from T-shirts, baby onesies, socks, and underwear worn for a single day after having been purchased new, washed, and dried. The highest bacterial loads were recovered from socks, underwear, and onesies (>106 colony-forming units [cfu]/sample) and the highest fungal loads were obtained from socks and underwear (>5 × 102 cfu/sample). The sequencing method identified opportunistic pathogens present in the samples, including members of genus Staphylococcus and Corynebacterium, as well as anaerobic members of the family Clostridiales. The opportunistic fungal pathogen Candida parapsilosis was identified in a high proportion of worn clothing samples. These results suggest that clothing may represent a pathogen reservoir and a vector for microbial exchange between household occupants or the community outside of the home.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.