A serious drop in ensuring the water quality in the distribution system is a factor that affects public health. This could lead to increase in biological and non-biological contents, change in colour and odour of the water. These contaminants cause a serious threat to the whole water ecosystem. The conventional methods of analyzing the water quality require much time and labour. So there is a need to monitor and protect the water with a real time water quality monitoring system in order to make active measurements to reduce contamination. The growth of the technology had helped in developing efficient methods to solve many serious issues in real-time. Internet of things (IoT) has achieved a great focus due to its faster processing and intelligence. This paper focuses on discussing the architecture, applications and need of IoT in water management system.
The water distribution system has deployed several low-power IoT devices on an uneven surface where battery power is a major concern. Therefore, this paper focuses on using a UAV-enabled wireless powered communication network capable of directing energy to a target location and using it for communication, thereby reducing battery issues. In this paper, a static optimization was applied to find the initial height values using 3D clustering and beamforming method and dynamic optimization using extremum seeking method was applied to find the optimized height. The optimized height values were calculated and Travelling Salesman Problem (TSP) was applied to create the trajectory of the UAV. The overall energy consumption of the UAV was minimized by integrating dynamic optimization and dome packing method, which can find an optimal position and trajectory where the UAV will be hovering to direct energy and collect data. Moreover, we also minimized the total flight time of the UAV.
In the practical implementation of wireless powered communication network (WPCN) project, the energy consumption is an important factor to evaluate the performance and efficiency of the communication. In this project, a UAV enabled WPCN acts as a hybrid access point to handle multiple ground terminals (GT's) in an uneven plane. The ground terminals will harvest radio frequency (RF) energy from the RF signals directed by the UAV and these terminal uses this harvested energy to send information to the uplink. The objective of the paper is to find an optimal position of UAV using a proposed dome packing method to navigate the UAV, thus UAV will be able to charge the GTs within the cluster using 3D beamforming method where the beam will be focusing to a particular terminal rather than broadcasting the signals everywhere and thereby minimize the total energy consumption and mission completion time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.