Gram-negative bacteria such as Escherichia coli build a peptidoglycan (PG) cell wall in their periplasm using the precursor known as lipid II. Lipid II is a large amphipathic molecule composed of undecaprenyl diphosphate and a disaccharide-pentapeptide that PG-synthesizing enzymes use to build the PG sacculus. During PG biosynthesis, lipid II is synthesized at the cytoplasmic face of the inner membrane and then flipped across the membrane. This translocation of lipid II must be assisted by flippases thought to shield the disaccharide-pentapeptide as it crosses the hydrophobic core of the membrane. The inner membrane protein MurJ is essential for PG biogenesis and homologous to known and putative flippases of the MOP (multidrug/oligo-saccharidyl-lipid/polysaccharide) exporter superfamily, which includes flippases that translocate undecaprenyl diphosphate-linked oligosaccharides across the cytoplasmic membranes of bacteria. Consequently, MurJ has been proposed to function as the lipid II flippase in E. coli. Here, we present a three-dimensional structural model of MurJ generated by the I-TASSER server that suggests that MurJ contains a solvent-exposed cavity within the plane of the membrane. Using in vivo topological studies, we demonstrate that MurJ has 14 transmembrane domains and validate features of the MurJ structural model, including the presence of a solvent-exposed cavity within its transmembrane region. Furthermore, we present functional studies demonstrating that specific charged residues localized in the central cavity are essential for function. Together, our studies support the structural homology of MurJ to MOP exporter proteins, suggesting that MurJ might function as an essential transporter in PG biosynthesis.T he cell envelope of most bacteria contains a cell wall exoskeleton composed of peptidoglycan (PG) that surrounds the cytoplasmic membrane (1, 2). The rigid PG structure protects the bacterium from osmotic rupture, serves as a scaffold onto which other envelope components are attached, and defines cell shape. Underscoring the essentiality of the PG cell wall is the fact that many antibiotics target PG biosynthesis (3).Bacteria build their PG sacculus by polymerizing an N-acetylglucosamine-N-acetylmuramic acid (GlcNAc-MurNAc) disaccharide-pentapeptide into long glycan chains that are cross-linked by peptide bonds between stem peptides (2). This GlcNAcMurNAc disaccharide-pentapeptide is synthesized at the cytoplasmic side of the membrane as a polyisoprenyl lipid-linked precursor known as lipid II (Fig. 1A) (4). Because lipid II polymerization occurs at the extracytoplasmic side of the membrane, an obligatory step in PG biosynthesis is the translocation of the lipidlinked disaccharide-pentapeptide across the cytoplasmic membrane.The use of polyisoprenyl lipid-linked precursors in the biogenesis of envelope glycopolymers is widespread in bacteria. Examples include the biogenesis of PG, certain capsules and exopolysaccharides, and O antigens (5, 6). In these systems, bacteria build each precursor ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.