Abstract-In this paper, a new method to filter coherency matrices of polarimetric or interferometric data is presented. For each pixel, an adaptive neighborhood (AN) is determined by a region growing technique driven exclusively by the intensity image information. All the available intensity images of the polarimetric and interferometric terms are fused in the region growing process to ensure the validity of the stationarity assumption. Afterward, all the pixels within the obtained AN are used to yield the filtered values of the polarimetric and interferometric coherency matrices, which can be derived either by direct complex multilooking or from the locally linear minimum mean-squared error (LLMMSE) estimator. The entropy/alpha/anisotropy decomposition is then applied to the estimated polarimetric coherency matrices, and coherence optimization is performed on the estimated polarimetric and interferometric coherency matrices. Using this decomposition, unsupervised classification for land applications by an iterative algorithm based on a complex Wishart density function is also applied. The method has been tested on airborne high-resolution polarimetric interferometric synthetic aperture radar (POL-InSAR) images (Oberpfaffenhofen area-German Space Agency). For comparison purposes, the two estimation techniques (complex multilooking and LLMMSE) were tested using three different spatial supports: a fix-sized symmetric neighborhood (boxcar filter), directional nonsymmetric windows, and the proposed AN. Subjective and objective performance analysis, including coherence edge detection, receiver operating characteristics plots, and bias reduction tables, recommends the proposed algorithm as an effective POL-InSAR postprocessing technique.Index Terms-Coherency estimation, interferometry, multivariate region growing, polarimetric synthetic aperture radar.
This paper discusses the use of the computer vision in the interpretation of human gestures. Hand gestures would be an intuitive and ideal way of exchanging information with other people in a virtual space, guiding some robots to perform certain tasks in a hostile environment, or interacting with computers. Hand gestures can be divided into two main categories: static gestures and dynamic gestures. In this paper, a novel dynamic hand gesture recognition technique is proposed. It is based on the 2D skeleton representation of the hand. For each gesture, the hand skeletons of each posture are superposed providing a single image which is the dynamic signature of the gesture. The recognition is performed by comparing this signature with the ones from a gesture alphabet, using Baddeley's distance as a measure of dissimilarities between model parameters
Time-of-flight (TOF) cameras are based on a new technology that delivers distance maps by the use of a modulated light source. In this paper we first describe a set of experiments that we performed with TOF cameras. We then propose a noise model which is able to explain some of the phenomena observed in the experiments. The model is based on assuming a noise source that is correlated with the light source (shot noise) and an additional additive noise source (dark current noise). The model predicts well the dependency of the distance errors on the image intensity and the true distance at an individual pixel.I.
A new method for filtering the coherence map issued from synthetic aperture radar (SAR) interferometric data is presented. For each pixel of the interferogram, an adaptive neighborhood is determined by a region-growing technique driven by the information provided by the amplitude images. Then pixels in the derived adaptive neighborhood are complex averaged to yield the filtered value of the coherence, after a phase-compensation step is performed. An extension of the algorithm is proposed for polarimetric interferometric SAR images. The proposed method has been applied to both European Remote Sensing (ERS) satellite SAR images and airborne high-resolution polarimetric interferometric SAR images. Both subjective and objective performance analysis, including coherence edge detection, shows that the proposed method provides better results than the standard phase-compensated fixed multilook filter and the Lee adaptive coherence filter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.