Human cadaveric prosections are a traditional, effective, and highly appreciated modality of anatomy learning. Plastic models are an alternative teaching modality, though few studies examine their effectiveness in learning of upper limb musculoskeletal anatomy. The purpose of this study is to investigate which modality is associated with a better outcome, as assessed by students' performance on examinations. Overall, 60 undergraduate medical students without previous knowledge of anatomy participated in the study. Students were assigned into two groups. Group 1 attended lectures and studied from cadaveric prosections (n = 30) and Group 2 attended lectures and used plastic models in the laboratory (n = 30). A knowledge assessment, including examination with tag questions (spot test) and written multiple‐choice questions, was held after the end of the study. Students' perceptions were also investigated via an anonymous questionnaire. No significant difference in students' performance was observed between the group using prosections and the group using plastic models (32.2 ± 14.7 vs 35.0 ± 14.8, respectively; P = 0.477). Similarly, no statistically significant difference was found regarding students' satisfaction from using each learning modality (P = 0.441). Plastic models may be a valuable supplementary modality in learning upper limb musculoskeletal anatomy, despite their limitations. Easy to use and with no need for maintaining facilities, they are highly appreciated by students and can be useful when preparing for the use of cadaveric specimens.
Anatomy teaching has traditionally been based on dissection. However, alternative teaching modalities constantly emerge, the use of which along with a decrease in teaching hours has brought the anatomy knowledge of students and young doctors into question. In this way, the goal of the present study is to a. compare the efficacy of the most common teaching modalities and b. investigate students’ perceptions on each modality. In total, 313 medical students were taught gross anatomy of the upper limb, using four different learning modalities: dissection (n = 80), prosections (n = 77), plastic models (n = 84) and 3D anatomy software (n = 72). Students’ knowledge was examined by 100 multiple-choice and tag questions followed by an evaluation questionnaire. Regarding performance, the dissection and the 3D group outperformed the prosection and the plastic models group in total and multiple-choice questions. The performance of the 3D group in tag questions was also statistically significantly higher compared to the other three groups. In the evaluation questionnaire, dissection outperformed the rest three modalities in questions assessing students’ satisfaction, but also fear or stress before the laboratory. Moreover, dissection and 3D software were considered more useful when preparing for clinical activities. In conclusion, dissection remains first in students’ preferences and achieves higher knowledge acquisition. Contemporary, 3D anatomy software are considered equally important when preparing for clinical activities and mainly favor spatial knowledge acquisition. Prosections could be a valuable alternative when dissection is unavailable due to limited time or shortage of cadavers. Plastic models are less effective in knowledge acquisition but could be valuable when preparing for cadaveric laboratories. In conclusion, the targeted use of each learning modality is essential for a modern medical curriculum.
Summarizing, 10 out of our 17 skeletons were presented with variations (extremely narrow or multiple foramina). This finding of hypoplastic, duplicated and triplicated foramina transversaria in unexpectedly high rates raises questions about the integrity of the contained structures, the possibility of a different path for them. These variations may induce an extra-osseous position of the vertebra artery, and the ignorance of such an event may have catastrophic consequences during a surgery in the cervical spine.
Vertebral artery injury is not common but may be a disastrous complication during cervical spine surgery. Proper preoperative planning is essential for any surgeon and exact knowledge of the anatomy in each patient is essential. This study strongly recommends the preoperative use of a CTa when suspicion of a variation is present and implied by a foramen variation. These slides can be retrieved under Electronic Supplementary Material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.