Traditional image processing techniques provide sustainable efficiency in the astrometry of deep space objects and in applied problems of determining the parameters of artificial satellite orbits. But the speed of the computing architecture and the functions of small optical systems are rapidly developing thus contribute to the use of a dynamic video stream for detecting and initializing space objects. The purpose of this paper is to automate the processing of optical measurement data during detecting space objects and numerical methods for the initial orbit determination.This article provided the implementation of a low-cost autonomous optical system for detecting of space objects with remote control elements. The basic algorithm model had developed and tested within the framework of remote control of a simplified optical system based on a Raspberry Pi 4 single-board computer with a modular camera. Under laboratory conditions, the satellite trajectory had simulated for an initial assessment of the compiled algorithmic modules of the computer vision library OpenCV.Based on the simulation results, dynamic detection of the International Space Station in real-time from the observation site with coordinates longitude 25o41′49″ East, latitude 53o52′36″ North in the interval 00:54:00–00:54:30 17.07.2021 (UTC + 03:00) had performed. The video processing result of the pass had demonstrated in the form of centroid coordinates of the International Space Station in the image plane with a timestamps interval of which is 0.2 s.This approach provides an autonomous raw data extraction of a space object for numerical methods for the initial determination of its orbit.
The work purpose is the development of BSUIM-1 and BSUIM-2 complexes for training specialists in the aerospace industry with the used engineering test beds and experimental facilities.Two sets of nanosatellite engineering models and ground stations had developed. They allow testing hardware and software of the onboard equipment and payload, simulating operation modes, and flight programs, and enable students to gain practical skills in working with ultra-small satellites. The complexes include ground stations, 2 ultra-small satellite simulators, BSUSAT-1 low-orbit nanosatellite, remote access laboratory, local and external servers for data storage. The complexes' website and database allow for full-time and remote training. The experience gained in conducting experiments, processing telemetry, and structuring information in the database is used for further development. All the developed equipment is made based on commercial off-the-shelf elements. It has reduced development costs, flexible equipment reconfiguration, and easier access to the simulator's internal architecture for demonstration purposes.The developed complexes allow students to practically study the ultra-small satellite components design and ground stations, methods for receiving and processing telemetry and scientific information, attitude determination and control algorithms. The complexes allow to conduct of research in the development of individual onboard systems and special-purpose equipment of the nanosatellite and their testing in the loop. The results obtained are introduced into the educational process and are used in lectures and laboratory classes for aerospace specialties students. The developed complexes make it possible to carry out term papers, theses, and master’s works related to the design of hardware and software for nanosatellites and a ground station, the setting up of space experiments, the development of new algorithms and a flight program for ultra-small satellites.
The roadmap for constructing a regional nanosatellite constellation using the piggyback launch according to Chinese provider information has developed. For nanosatellite constellation formation to a specific purpose, it is necessary to analyse existing constellation operated similar tasks. Therefore, the software module for the Spire Global constellation orbital construction analysis was developed. The construction of Spire Global nanosatellites constellation based on orbital parameters database in the two-line element set format, satellite constellation databases and the developer site was analysed. A launch from the International Space Station and a piggyback launch were used for constellation formation. Nanosatellite deployment schemes, orbital parameters and flight parameters are investigated launches from the Taiyuan and Jiuquan Satellite Launch Centers with orbit inclination about 90°, that best correspond to the passes over Minsk (ϕ = 53°54′27″ N, λ = 27°33′52″ E) are analysed. The method of nanosatellite orbit preflight prediction at a passing launch has been developed. It involves a finding the nanosatellite state vector in the first flight day and at the time of constellation mission operate start. The launch time, satellite launch center coordinates, launch vehicle type, orbit inclination and altitude (period) are used in the method. In addition, the launch history and the satellite motion dynamics analysis on similar orbits is carried out. It was found that five launches are enough to organise a regional nanosatellite constellation with average radio visibility interruption time of at least 36 min with a maximum value of 85 min.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.