The hippocampus and prefrontal cortex (PFC) are connected in a reciprocal manner: whereas the hippocampus projects directly to the PFC, a polysynaptic pathway that passes through the nucleus reuniens (RE) of the thalamus relays inputs from the PFC to the hippocampus. The present study demonstrates that lesioning and/or inactivation of the RE reduces coherence in the PFC–hippocampal pathway, provokes an antidepressant-like behavioral response in the forced swim test and prevents, but does not ameliorate, anhedonia in the chronic mild stress (CMS) model of depression. Additionally, RE lesioning before CMS abrogates the well-known neuromorphological and endocrine correlates of CMS. In summary, this work highlights the importance of the reciprocal connectivity between the hippocampus and PFC in the establishment of stress-induced brain pathology and suggests a role for the RE in promoting resilience to depressive illness.
Aromatase inhibitors block the conversion of androgens to oestrogens and are used for the treatment of hormone-responsive breast cancer in menopause and recently also in premenopausal women. We investigate whether decreased oestrogen synthesis following aromatase inhibition leads to a depressive-like behavioural response in cycling female rats. Using the forced swim test (FST) we estimate the response of acute (three injections in 24 h) and sustained (7 d) letrozole and fluoxetine administration. Acute aromatase inhibition decreases immobility duration in the FST, indicating its antidepressant potential. Instead, sustained aromatase inhibition did not show such antidepressant potential. Testosterone elevation associates with the decreased depressive behaviour in the FST following acute letrozole treatment, but interestingly progesterone explains the increased swimming behaviour. Present findings may have potential implications for women treated with aromatase inhibitors, especially before menopause, as well as for the role of gonadal hormones in the expression of depressive symptoms and antidepressant response.
Dopamine D4 receptor (D4R) mechanisms are implicated in psychiatric diseases characterized by cognitive deficits, including schizophrenia, ADHD, and autism. The cellular mechanisms are poorly understood, but impaired neuronal synchronization in cortical networks was proposed to contribute to these deficits. In animal experiments, D4R activation was shown to generate aberrant increased gamma oscillations and to reduce performance on cognitive tasks requiring functional prefrontal cortex (PFC) and hippocampus (HPC) networks. While fast oscillations in the gamma range are important for local synchronization within neuronal ensembles, long-range synchronization between distant structures is achieved by slow rhythms in the delta, theta, alpha ranges. The characteristics of slow oscillations vary between structures during cognitive tasks. HPC activity is dominated by theta rhythm, whereas PFC generates unique oscillations in the 2–4 Hz range. In order to investigate the role of D4R on slow rhythms, cortical activity was recorded in rats under urethane anesthesia in which slow oscillations can be elicited in a controlled manner without behavioral confounds, by electrical stimulation of the brainstem reticular formation. The local field potential segments during stimulations were extracted and subjected to fast Fourier transform to obtain power density spectra. The selective D4R agonist A-412997 (5 and 10 mg/kg) and antagonists L-745870 (5 and 10 mg/kg) were injected systemically and the peak power in the two frequency ranges were compared before and after the injection. We found that D4R compounds significantly changed the activity of both HPC and PFC, but the direction of the effect was opposite in the two structures. D4R agonist enhanced PFC slow rhythm (delta, 2–4 Hz) and suppressed HPC theta, whereas the antagonist had an opposite effect. Analogous changes of the two slow rhythms were also found in the thalamic nucleus reuniens, which has connections to both forebrain structures. Slow oscillations play a key role in interregional cortical coupling; delta and theta oscillations were shown in particular, to entrain neuronal firing and to modulate gamma activity in interconnected forebrain structures with a relative HPC theta dominance over PFC. Thus, the results of this study indicate that D4R activation may introduce an abnormal bias in the bidirectional PFC–HPC coupling which can be reversed by D4R antagonists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.