This review considers the physiological and molecular biochemical mechanisms of bile formation. The composition of bile and structure of a bile canaliculus, biosynthesis and conjugation of bile acids, bile phospholipids, formation of bile micellar structures, and enterohepatic circulation of bile acids are described. In general, the review focuses on the molecular physiology of the transporting systems of the hepatocyte sinusoidal and apical membranes. Knowledge of physiological and biochemical basis of bile formation has implications for understanding the mechanisms of development of pathological processes, associated with diseases of the liver and biliary tract.
A number of new hepatitis viruses (G, TT, SEN) were discovered late in the past century. We review the data available in the literature and our own findings suggesting that the new hepatitis G virus (HGV), disclosed in the late 1990s, has been rather well studied. Analysis of many studies dealing with HGV mainly suggests the lymphotropicity of this virus. HGV or GBV-C has been ascertained to influence course and prognosis in the HIV-infected patient. Until now, the frequent presence of GBV-C in coinfections, hematological diseases, and biliary pathology gives no grounds to determine it as an "accidental tourist" that is of no significance. The similarity in properties of GBV-C and hepatitis C virus (HCV) offers the possibility of using HGV, and its induced experimental infection, as a model to study hepatitis C and to develop a hepatitis C vaccine.
Primary biliary cirrhosis (PBC) is a chronic progressive cholestatic granulomatous, and destructive inflammatory lesion of small intralobular and septal bile ducts, which is likely to be caused by an autoimmune mechanism with a the presence of serum antimitochondrial antibodies and a potential tendency to progress to cirrhosis. Despite the fact that the etiology of this disease has been unknown so far, there has been a considerable body of scientific evidence that can reveal the clinical and laboratory signs of PBC and the individual components of its pathogenesis and elaborate diagnostic criteria for the disease and its symptomatic therapy. Deficiencies in autoimmune tolerance are critical factors for the initiation and perpetuation of the disease. The purpose of this review is to summarize the data available in the literature and the author's findings on clinical and laboratory criteria for the diagnosis of PBC. This review describes the major clinical manifestations of the disease and the mechanisms of its development. It presents the immunological, biochemical, and morphological signs of PBC and their significance for its diagnosis. A great deal of novel scientific evidence for the problem of PBC has been accumulated. However, the inadequate efficiency of therapy for the disease lends impetus to the quest for its etiological factors and to further investigations of its pathogenetic mechanisms and, on this basis, to searches for new methods for its early diagnosis.
Nearly half of the global population are carriers of Helicobacter pylori (H. pylori), a Gram-negative bacterium that persists in the healthy human stomach. H. pylori can be a pathogen and causes development of peptic ulcer disease in a certain state of the macroorganism. It is well established that H. pylori infection is the main cause of chronic gastritis and peptic ulcer disease (PUD). Decontamination of the gastric mucosa with various antibiotics leads to H. pylori elimination and longer remission in this disease. However, the reasons for repeated detection of H. pylori in recurrent PUD after its successful eradication remain unclear. The reason for the redetection of H. pylori in recurrent PUD can be either reinfection or ineffective anti-Helicobacter therapy. The administration of antibacterial drugs can lead not only to the emergence of resistant strains of microorganisms, but also contribute to the conversion of H. pylori into the resting (dormant) state. The dormant forms of H. pylori have been shown to play a potential role in the development of relapses of PUD. The paper discusses morphological H. pylori forms, such as S-shaped, C-shaped, U-shaped, and coccoid ones. The authors proposes the classification of H. pylori according to its morphological forms and viability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.