The paper deals with free vibrations of a system with power-law nonlinear elasticity subjected to power-law viscous resistance. The relation between the nonlinearity indices is determined when the impact of the viscous resistance force causes the vibrations to die away. In this case the vibrations are limited in time i.e. consist of a finite number of cycles analogous to a system with Coulomb dry friction. The research exploits the energy balance method. The periodic Ateb-functions are used to obtain an approximate formula for the work of dissipative force over a semi-cycle of vibrations. A recursive power-law equation for the vibration swings is derived from the condition of equality of the work to the potential energy change. By analyzing the change of the coefficient in the equation, which is related to the change of the semi-cycle number as well as the vibration swings, the condition for the equation to have no positive root is determined, which means that the vibrations die away. The condition is formulated in the form of an inequality. It is shown to generalize the results previously known. The theoretical inferences are verified by numerical integration of the nonlinear differential equation of motion. It is shown that under the conditions proposed in the paper the free vibrations consist of a finite number of cycles even if dry friction is absent from the system. Special cases are highlighted, when the approximate energy balance method results into exact computational formulae. The length of the cycles increases during the motion since it depends on the swing of damped vibrations in the essentially nonlinear system with rigid force characteristics considered.
The features of motion of a non-linear oscillator under the instantaneous force pulse loading are studied. The elastic characteristic of the oscillator is given by a polygonal chain consisting of two linear segments. The focus of the paper is on the influence of the dissipative forces on the possibility of occurrence of the elastic characteristic non-symmetry dynamic effect, studied previously without taking into account the influence of these forces. Four types of drag forces are considered, namely linear viscous friction, Coulomb dry friction, position friction, and quadratic viscous resistance. For the cases of linear viscous friction and Coulomb dry friction the analytical solutions of the differential equation of oscillations are found by the fitting method and the formulae for computing the swings are derived. The conditions on the parameters of the problem are determined for which the elastic characteristic non-symmetry dynamic effect occurs in the system. The conditions for the effect to occur in the system with the position friction are derived from the energy relations without solving the differential equation of motion. In the case of quadratic viscous friction the first integral of the differential equation of motion is given by the Lambert function of either positive or negative argument depending on the value of the initial velocity. The elastic characteristic non-symmetry dynamic effect is shown to occur for small initial velocities, whereas it is absent from the system when the initial velocities are sufficiently large. The values of the Lambert function are proposed to be computed by either linear interpolation of the known data or approximation of the Lambert function by elementary functions using asymptotic formulae which approximation error is less than 1%. The theoretical study presented in the paper is followed up by computational examples. The results of the computations by the formulae proposed in the paper are shown to be in perfect agreement with the results of numerical integration of the differential equation of motion of the oscillator using a computer.
Розглянуто рух осцилятора з показником нелінійності 3/2 при дії ступінчастого та прямокутного імпульсів. Побудовано аналітичний розв'язок нелінійного диференціального рівняння другого порядку, де для розрахунку переміщень задіяно періодичні Ateb-функції та еліптичний косинус Якобі. Встановлено, що при наванта женні осцилятора миттєво прикладеною сталою силою коефіцієнт динамічності дорівнює (2,5) 2/3 . При дії на осцилятор прямокутного силового імпульсу коефіцієнт динамічності залежить від тривалості імпульсу, але не перевершує (2,5) 2/3 . Визначено такі тривалості, за яких розвантажений осцилятор має найбільшу та найменшу амплітуди коливань. Для спрощення розрахунків, з використанням одержаних розв'язків задачі Коші, складено таблиці, задіяних спеціальних функцій. Наведено приклади розрахунків, які підтверджують вірогідність виведених формул. Ключові слова: нелінійний осцилятор, жорстка характеристика пружності, імпульсне навантаження, коефіцієнт динамічності, періодичні Ateb-функції, еліптичний косинус. В.П. ОЛЬШАНСКИЙ, С.В. ОЛЬШАНСКИЙ ДИНАМИКА ОСЦИЛЛЯТОРА С ЖЕСТКОЙ ХАРАКТЕРИСТИКОЙ УПРУГОСТИ ПРИ ВОЗДЕЙСТВИИ СИЛОВОГО ИМПУЛЬСАРассмотрено движение осциллятора с показателем нелинейности 3/2 при действии ступенчатого и прямоугольного импульсов. Построено аналитическое решение нелинейного дифференциального уравнения второго порядка, где для расчета перемещений задействовано периодические Ateb-функции и эллиптический косинус Якоби. Установлено, что при нагружении осциллятора мгновенно приложенной постоянной силой коэффициент динамичности равен (2,5) 2/3 . При воздействии на осциллятор прямоугольного силового импульса коэффициент динамичности зависит от продолжительности импульса и не превышает (2,5) 2/3 . Определены такие продолжительности, при которых разгруженный осциллятор имеет наибольшую и наименьшую амплитуды колебаний. Для упрощения расчетов, с применением полученных решений задачи Коши, составлены таблицы задействованных специальных функций. Приведены примеры расчетов, которые подтверждают достоверность выведенных формул.Ключевые слова: нелинейный осциллятор, жесткая характеристика упругости, импульсное нагружение, коэффициент динамичности, периодические Ateb-функции, эллиптический косинус.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.