Critical phenomena in stock exchange are regularly occurring and difficult to predict events, often leading to disastrous consequences. The presented paper is devoted to the search and research of early warning signals of critical transitions in stock exchange based on the results of a multifractal analysis of a series of transactions in shares of public companies. We have proposed and justified the use of certain features of behavior of multifractal spectrum shape parameters such as signals. As model time series, on which methods of multifractal analysis were tested, we used a series of the number of unstable sites of the sandpile automaton on the random Erdős–Rényi graph, self-organizing into critical and bistable states. It was found that the early warning signals for both cellular automata and stock exchanges are an increase in the magnitude of the maximum position, a decrease in the width, and a decrease, followed by a sharp increase, in the value of the spectrum asymmetry parameter.
The sandpile cellular automata, despite the simplicity of their basic rules, are adequate mathematical models of real-world systems, primarily open nonlinear systems capable to self-organize into the critical state. Such systems surround us everywhere. Starting from processes at microscopic distances in the human brain and ending with large-scale water flows in the oceans. The detection of critical transitions precursors in sandpile cellular automata will allow progress significantly in the search for effective early warning signals for critical transitions in complex real systems. The presented paper is devoted to the detection and investigation of such signals based on multifractal analysis of the time series of falls of the cellular automaton cells. We examined cellular automata in square lattice and random graphs using standard and facilitated rules. It has been established that log wavelet leaders cumulant are effective early warning measures of the critical transitions. Common features and differences in the behavior of the log cumulants when cellular automata transit into the self-organized critical state and the self-organized bistability state are also established.
Recent developments in nonlinear science have caused the formation of a new paradigm called the paradigm of complexity. The self-organized criticality theory constitutes the foundation of this paradigm. To estimate the complexity of a microblogging social network, we used one of the conceptual schemes of the paradigm, namely, the system of key signs of complexity of the external manifestations of the system irrespective of its internal structure. Our research revealed all the key signs of complexity of the time series of a number of microposts. We offer a new model of a microblogging social network as a nonlinear random dynamical system with additive noise in three-dimensional phase space. Implementations of this model in the adiabatic approximation possess all the key signs of complexity, making the model a reasonable evolutionary model for a microblogging social network. The use of adiabatic approximation allows us to model a microblogging social network as a nonlinear random dynamical system with multiplicative noise with the power-law in one-dimensional phase space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.