We present a general approach for modeling synchronous component-based systems. These are systems of synchronous components strongly synchronized by a common action that initiates steps of each component. We propose a general model for synchronous systems. Steps are described by acyclic Petri nets equipped with data and priorities. Petri nets are used to model concurrent flow of computation. Priorities are instrumental for enforcing run-to-completion in the execution of a step.We study a class of well-triggered synchronous systems which are by construction deadlock-free and their computation within a step is confluent. For this class, the behavior of components is modeled by modal flow graphs. These are acyclic graphs representing three different types of dependency between two events p and q: strong dependency (p must follow q), weak dependency (p may follow q), conditional dependency (if both p and q occur then p must follow q).We propose a translation of Lustre into well-triggered synchronous systems. This translation is modular and exhibits not only data-flow connections between nodes but also their synchronization by using clocks.
Abstract-We present a method for the translation of a discretetime fragment of Simulink into the synchronous subset of the BIP language.The translation is fully compositional, that is, it preserves completely the original structure and reveals the minimal control coordination structure needed to perform the correct computation within Simulink models. Additionally, this translation can be seen as providing an alternative operational semantics of Simulink models using BIP. The advantages are twofold. It allows for integration of Simulink models within heterogeneous BIP designs. It enables the use of validation and automatic implementation techniques already available for BIP on Simulink models.The translation is currently implemented in the Simulink2BIP tool. We report several experiments, in particular, we show that the executable code generated from BIP models has comparable runtime performances as the code produced by the Real-Time Workshop on several Simulink models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.